michaelcreatesstuff's picture
Duplicate from longlian/llm-grounded-diffusion
0305ee7
raw
history blame
9.94 kB
import torch
from tqdm import tqdm
import utils
from PIL import Image
import gc
import numpy as np
from .attention import GatedSelfAttentionDense
from .models import process_input_embeddings, torch_device
@torch.no_grad()
def encode(model_dict, image, generator):
"""
image should be a PIL object or numpy array with range 0 to 255
"""
vae, dtype = model_dict.vae, model_dict.dtype
if isinstance(image, Image.Image):
w, h = image.size
assert w % 8 == 0 and h % 8 == 0, f"h ({h}) and w ({w}) should be a multiple of 8"
# w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
# image = np.array(image.resize((w, h), resample=Image.Resampling.LANCZOS))[None, :]
image = np.array(image)
if isinstance(image, np.ndarray):
assert image.dtype == np.uint8, f"Should have dtype uint8 (dtype: {image.dtype})"
image = image.astype(np.float32) / 255.0
image = image[None, ...]
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
assert isinstance(image, torch.Tensor), f"type of image: {type(image)}"
image = image.to(device=torch_device, dtype=dtype)
latents = vae.encode(image).latent_dist.sample(generator)
latents = vae.config.scaling_factor * latents
return latents
@torch.no_grad()
def decode(vae, latents):
# scale and decode the image latents with vae
scaled_latents = 1 / 0.18215 * latents
with torch.no_grad():
image = vae.decode(scaled_latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
return images
@torch.no_grad()
def generate(model_dict, latents, input_embeddings, num_inference_steps, guidance_scale = 7.5, no_set_timesteps=False, scheduler_key='dpm_scheduler'):
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
text_embeddings, uncond_embeddings, cond_embeddings = input_embeddings
if not no_set_timesteps:
scheduler.set_timesteps(num_inference_steps)
for t in tqdm(scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
images = decode(vae, latents)
ret = [latents, images]
return tuple(ret)
def gligen_enable_fuser(unet, enabled=True):
for module in unet.modules():
if isinstance(module, GatedSelfAttentionDense):
module.enabled = enabled
def prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt):
batch_size = len(bboxes)
assert len(phrases) == len(bboxes)
max_objs = 30
n_objs = min(max([len(bboxes_item) for bboxes_item in bboxes]), max_objs)
boxes = torch.zeros((batch_size, max_objs, 4), device=torch_device, dtype=dtype)
phrase_embeddings = torch.zeros((batch_size, max_objs, 768), device=torch_device, dtype=dtype)
# masks is a 1D tensor deciding which of the enteries to be enabled
masks = torch.zeros((batch_size, max_objs), device=torch_device, dtype=dtype)
if n_objs > 0:
for idx, (bboxes_item, phrases_item) in enumerate(zip(bboxes, phrases)):
# the length of `bboxes_item` could be smaller than `n_objs` because n_objs takes the max of item length
bboxes_item = torch.tensor(bboxes_item[:n_objs])
boxes[idx, :bboxes_item.shape[0]] = bboxes_item
tokenizer_inputs = tokenizer(phrases_item[:n_objs], padding=True, return_tensors="pt").to(torch_device)
_phrase_embeddings = text_encoder(**tokenizer_inputs).pooler_output
phrase_embeddings[idx, :_phrase_embeddings.shape[0]] = _phrase_embeddings
assert bboxes_item.shape[0] == _phrase_embeddings.shape[0], f"{bboxes_item.shape[0]} != {_phrase_embeddings.shape[0]}"
masks[idx, :bboxes_item.shape[0]] = 1
# Classifier-free guidance
repeat_times = num_images_per_prompt * 2
condition_len = batch_size * repeat_times
boxes = boxes.repeat(repeat_times, 1, 1)
phrase_embeddings = phrase_embeddings.repeat(repeat_times, 1, 1)
masks = masks.repeat(repeat_times, 1)
masks[:condition_len // 2] = 0
# print("shapes:", boxes.shape, phrase_embeddings.shape, masks.shape)
return boxes, phrase_embeddings, masks, condition_len
@torch.no_grad()
def generate_gligen(model_dict, latents, input_embeddings, num_inference_steps, bboxes, phrases, num_images_per_prompt=1, gligen_scheduled_sampling_beta: float = 0.3, guidance_scale=7.5,
frozen_steps=20, frozen_mask=None,
return_saved_cross_attn=False, saved_cross_attn_keys=None, return_cond_ca_only=False, return_token_ca_only=None,
offload_cross_attn_to_cpu=False, offload_latents_to_cpu=True,
return_box_vis=False, show_progress=True, save_all_latents=False, scheduler_key='dpm_scheduler', batched_condition=False):
"""
The `bboxes` should be a list, rather than a list of lists (one box per phrase, we can have multiple duplicated phrases).
"""
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict[scheduler_key], model_dict.dtype
text_embeddings, _, cond_embeddings = process_input_embeddings(input_embeddings)
if latents.dim() == 5:
# latents_all from the input side, different from the latents_all to be saved
latents_all_input = latents
latents = latents[0]
else:
latents_all_input = None
# Just in case that we have in-place ops
latents = latents.clone()
if save_all_latents:
# offload to cpu to save space
if offload_latents_to_cpu:
latents_all = [latents.cpu()]
else:
latents_all = [latents]
scheduler.set_timesteps(num_inference_steps)
if frozen_mask is not None:
frozen_mask = frozen_mask.to(dtype=dtype).clamp(0., 1.)
# 5.1 Prepare GLIGEN variables
if not batched_condition:
# Add batch dimension to bboxes and phrases
bboxes, phrases = [bboxes], [phrases]
boxes, phrase_embeddings, masks, condition_len = prepare_gligen_condition(bboxes, phrases, dtype, tokenizer, text_encoder, num_images_per_prompt)
if return_saved_cross_attn:
saved_attns = []
main_cross_attention_kwargs = {
'offload_cross_attn_to_cpu': offload_cross_attn_to_cpu,
'return_cond_ca_only': return_cond_ca_only,
'return_token_ca_only': return_token_ca_only,
'save_keys': saved_cross_attn_keys,
'gligen': {
'boxes': boxes,
'positive_embeddings': phrase_embeddings,
'masks': masks
}
}
timesteps = scheduler.timesteps
num_grounding_steps = int(gligen_scheduled_sampling_beta * len(timesteps))
gligen_enable_fuser(unet, True)
for index, t in enumerate(tqdm(timesteps, disable=not show_progress)):
# Scheduled sampling
if index == num_grounding_steps:
gligen_enable_fuser(unet, False)
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t)
main_cross_attention_kwargs['save_attn_to_dict'] = {}
# predict the noise residual
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings,
cross_attention_kwargs=main_cross_attention_kwargs).sample
if return_saved_cross_attn:
saved_attns.append(main_cross_attention_kwargs['save_attn_to_dict'])
del main_cross_attention_kwargs['save_attn_to_dict']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
if frozen_mask is not None and index < frozen_steps:
latents = latents_all_input[index+1] * frozen_mask + latents * (1. - frozen_mask)
if save_all_latents:
if offload_latents_to_cpu:
latents_all.append(latents.cpu())
else:
latents_all.append(latents)
# Turn off fuser for typical SD
gligen_enable_fuser(unet, False)
images = decode(vae, latents)
ret = [latents, images]
if return_saved_cross_attn:
ret.append(saved_attns)
if return_box_vis:
pil_images = [utils.draw_box(Image.fromarray(image), bboxes_item, phrases_item) for image, bboxes_item, phrases_item in zip(images, bboxes, phrases)]
ret.append(pil_images)
if save_all_latents:
latents_all = torch.stack(latents_all, dim=0)
ret.append(latents_all)
return tuple(ret)