Spaces:
Sleeping
Sleeping
File size: 1,370 Bytes
d1d1d6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.messages import AIMessage, HumanMessage
from pydantic import BaseModel
import time
import gradio as gr
import requests
from typing import Generator
chat_history = []
def generate_response(chat_input: str, bot_message: str) -> Generator[str, str, str] | str:
url = "http://127.0.0.1:8000/generatechat/"
payload = {
'question': chat_input,
}
headers = {
'Content-Type': 'application/json'
}
response = requests.post(url, json=payload, headers=headers)
if response.status_code == 200:
data = response.json()
answer = data['response']['answer']
print("Success:", response.json())
# Get a typewriting animation response
partial_response = ""
for char in answer:
partial_response += char
yield partial_response
time.sleep(0.005)
else:
print("Error:", response.status_code, response.text)
return f"Error: {response.status_code}, {response.text}"
with gr.Blocks() as demo:
with gr.Column():
chatbot = gr.ChatInterface(
fn=generate_response,
title="AskmeAboutRAG Chat",
description="RAG model for asking about RAG",
)
if __name__ == "__main__":
demo.launch() |