Spaces:
Sleeping
Sleeping
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.messages import AIMessage, HumanMessage | |
from pydantic import BaseModel | |
import time | |
import gradio as gr | |
import requests | |
from typing import Generator | |
chat_history = [] | |
def generate_response(chat_input: str, bot_message: str) -> Generator[str, str, str] | str: | |
url = "http://127.0.0.1:8000/generatechat/" | |
payload = { | |
'question': chat_input, | |
} | |
headers = { | |
'Content-Type': 'application/json' | |
} | |
response = requests.post(url, json=payload, headers=headers) | |
if response.status_code == 200: | |
data = response.json() | |
answer = data['response']['answer'] | |
print("Success:", response.json()) | |
# Get a typewriting animation response | |
partial_response = "" | |
for char in answer: | |
partial_response += char | |
yield partial_response | |
time.sleep(0.005) | |
else: | |
print("Error:", response.status_code, response.text) | |
return f"Error: {response.status_code}, {response.text}" | |
CSS =""" | |
.contain { display: flex; flex-direction: column; } | |
.gradio-container { height: 100vh !important; } | |
#component-0 { height: 100%; } | |
#chatbot { flex-grow: 1; overflow: auto;} | |
""" | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot(elem_id="chatbot") | |
chatbot = gr.ChatInterface( | |
fn=generate_response, | |
title="AskmeAboutRAG Chat", | |
description="RAG model for asking about RAG", | |
chatbot=chatbot, | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name = "0.0.0.0") |