Spaces:
Sleeping
Sleeping
import fitz | |
import os | |
from sentence_transformers import SentenceTransformer | |
from pinecone import Pinecone | |
from dotenv import load_dotenv | |
import os | |
load_dotenv() | |
pc = Pinecone(api_key=os.getenv('PINECONE_KEY')) | |
index_name = "askmeaboutrag" | |
index = pc.Index(index_name) | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
def extract_pages_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
pages = [] | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text = page.get_text("text") | |
pages.append(text) | |
return pages | |
def store_document_in_pinecone(document_id, pages, title, model): | |
for page_number, page_text in enumerate(pages): | |
embedding = model.encode(page_text) | |
index.upsert( | |
vectors=[ | |
{ | |
"id": f'{document_id}_page_{page_number}', | |
"values": embedding, | |
"metadata": { | |
"document_id": document_id, | |
"page_number": page_number, | |
"text": page_text, | |
"title": title, | |
} | |
} | |
], | |
) | |
print(f"Stored {len(pages)} pages for document: {document_id}") | |
def process_pdfs_in_folder(folder_path): | |
for i, filename in enumerate(os.listdir(folder_path)): | |
if filename.endswith('.pdf'): | |
pdf_path = os.path.join(folder_path, filename) | |
document_id = str(i+1) | |
print(f"Processing {filename} with document_id: {document_id}") | |
pages = extract_pages_from_pdf(pdf_path) | |
file_name_without_extension = os.path.splitext(filename)[0] | |
store_document_in_pinecone(document_id, pages, file_name_without_extension, model) | |
print("Stored Completed") | |
folder_path = 'files' | |
process_pdfs_in_folder(folder_path) | |