microhum's picture
init
d1d1d6a
from langchain_core.messages import AIMessage, HumanMessage
from fastapi import FastAPI
from langchain_pinecone.vectorstores import Pinecone
from pydantic import BaseModel
from rag import Rag
from retriever import AskMeAboutRagRetriever
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
import os
load_dotenv()
api_key=os.getenv('PINECONE_KEY')
index_name="askmeaboutrag"
vectorstore = Pinecone(pinecone_api_key=api_key, index_name=index_name, embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
retriever = AskMeAboutRagRetriever(vectorstore)
rag_llm = Rag(vectorstore, retriever);
rag_llm.createRagChain()
chat_history = []
class ChatInput(BaseModel):
question: str
app = FastAPI()
@app.get("/")
async def root():
return {"message": "Hello World"}
@app.post("/generatechat/")
async def generateResponse(chat_input: ChatInput):
ai_msg = rag_llm.generateResponse(chat_input.question, chat_history)
chat_history.extend(
[
HumanMessage(content=chat_input.question),
AIMessage(content=ai_msg["answer"]),
]
)
return {"response": ai_msg}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="127.0.0.1", port=8000)
print("Server is running")