File size: 7,614 Bytes
667ab99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e64e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.utils import save_image
from dataloader import get_loader
from models.model_main import ModelMain
from models.transformers import denumericalize
from options import get_parser_main_model
from data_utils.svg_utils import render
from models.util_funcs import svg2img, cal_iou
from tqdm import tqdm
from PIL import Image

def test_main_model(opts):
    if opts.streamlit:
        import streamlit as st

    if opts.dir_res:
        os.mkdir(os.path.join(opts.dir_res, "results"))
        dir_res = os.path.join(opts.dir_res, "results")
    else:
        dir_res = os.path.join(f"{opts.exp_path}", "experiments/", opts.name_exp, "results")

    test_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size, 'test')
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
    if opts.streamlit:
        st.write("Loading Model Weight...")
    model_main = ModelMain(opts)
    path_ckpt = os.path.join(f"{opts.model_path}")
    model_main.load_state_dict(torch.load(path_ckpt)['model'])
    model_main.to(device)
    model_main.eval()
    with torch.no_grad():
        
        for test_idx, test_data in enumerate(test_loader):
            for key in test_data: test_data[key] = test_data[key].to(device)

            print("testing font %04d ..."%test_idx)

            dir_save = os.path.join(dir_res, "%04d"%test_idx)
            if not os.path.exists(dir_save):
                os.mkdir(dir_save)
                os.mkdir(os.path.join(dir_save, "imgs"))
                os.mkdir(os.path.join(dir_save, "svgs_single"))
                os.mkdir(os.path.join(dir_save, "svgs_merge"))
            svg_merge_dir = os.path.join(dir_save, "svgs_merge")

            iou_max = np.zeros(opts.char_num)
            idx_best_sample = np.zeros(opts.char_num)

            # syn_svg_merge_f = open(os.path.join(svg_merge_dir, f"{opts.name_ckpt}_syn_merge_{test_idx}_rand_{sample_idx}.html"), 'w') 
            syn_svg_merge_f = open(os.path.join(svg_merge_dir, f"{opts.name_ckpt}_syn_merge_{test_idx}.html"), 'w') 
    
            for sample_idx in tqdm(range(opts.n_samples)):
                
                ret_dict_test, loss_dict_test = model_main(test_data, mode='test')

                svg_sampled = ret_dict_test['svg']['sampled_1']
                sampled_svg_2 = ret_dict_test['svg']['sampled_2']

                img_trg = ret_dict_test['img']['trg']
                img_output = ret_dict_test['img']['out']
                trg_seq_gt = ret_dict_test['svg']['trg']

                img_sample_merge = torch.cat((img_trg.data, img_output.data), -2)
                save_file_merge = os.path.join(dir_save, "imgs", f"merge_{opts.img_size}.png")
                save_image(img_sample_merge, save_file_merge, nrow=8, normalize=True)    
                if opts.streamlit:
                    st.progress((sample_idx+1)/opts.n_samples, f"Generating Font Sample {sample_idx+1} Please wait...")
                    im = Image.open(save_file_merge)
                    st.image(im, caption='img_sample_merge')

                for char_idx in range(opts.char_num):
                    img_gt = (1.0 - img_trg[char_idx,...]).data
                    save_file_gt = os.path.join(dir_save,"imgs", f"{char_idx:02d}_gt.png")
                    save_image(img_gt, save_file_gt, normalize=True)

                    img_sample = (1.0 - img_output[char_idx,...]).data
                    save_file = os.path.join(dir_save,"imgs", f"{char_idx:02d}_{opts.img_size}.png")
                    save_image(img_sample, save_file, normalize=True)

                # write results w/o parallel refinement
                svg_dec_out = svg_sampled.clone().detach()
                for i, one_seq in enumerate(svg_dec_out):
                    syn_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{sample_idx}_wo_refine.svg")

                    syn_svg_f_ = open(syn_svg_outfile, 'w')
                    try:
                        svg = render(one_seq.cpu().numpy())
                        syn_svg_f_.write(svg)
                        # syn_svg_merge_f.write(svg)
                        if i > 0 and i % 13 == 12:
                            syn_svg_f_.write('<br>')
                            # syn_svg_merge_f.write('<br>')
                        
                    except:
                        continue
                    syn_svg_f_.close()
                
                # write results w/ parallel refinement
                svg_dec_out = sampled_svg_2.clone().detach()
                for i, one_seq in enumerate(svg_dec_out):
                    syn_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{sample_idx}_refined.svg")

                    syn_svg_f = open(syn_svg_outfile, 'w')
                    try:
                        svg = render(one_seq.cpu().numpy())
                        syn_svg_f.write(svg)
                        #syn_svg_merge_f.write(svg)
                        
                        #if i > 0 and i % 13 == 12:
                        #    syn_svg_merge_f.write('<br>')
                    except:
                        continue
                    syn_svg_f.close()
                    syn_img_outfile = syn_svg_outfile.replace('.svg', '.png')
                    svg2img(syn_svg_outfile, syn_img_outfile, img_size=opts.img_size)
                    iou_tmp, l1_tmp = cal_iou(syn_img_outfile, os.path.join(dir_save, "imgs", f"{i:02d}_{opts.img_size}.png"))
                    iou_tmp = iou_tmp
                    if iou_tmp > iou_max[i]:
                        iou_max[i] = iou_tmp
                        idx_best_sample[i] = sample_idx

            for i in range(opts.char_num):
                # print(idx_best_sample[i])
                syn_svg_outfile_best = os.path.join(os.path.join(dir_save, "svgs_single"), f"syn_{i:02d}_{int(idx_best_sample[i])}_refined.svg")
                syn_svg_merge_f.write(open(syn_svg_outfile_best, 'r').read())
                if i > 0 and i % 13 == 12:
                    syn_svg_merge_f.write('<br>')

            svg_target = trg_seq_gt.clone().detach()
            tgt_commands_onehot = F.one_hot(svg_target[:, :, :1].long(), 4).squeeze()
            tgt_args_denum = denumericalize(svg_target[:, :, 1:])
            svg_target = torch.cat([tgt_commands_onehot, tgt_args_denum], dim=-1)

            for i, one_gt_seq in enumerate(svg_target):
                # gt_svg_outfile = os.path.join(os.path.join(dir_save, "svgs_single"), f"gt_{i:02d}.svg")
                # gt_svg_f = open(gt_svg_outfile, 'w')
                gt_svg = render(one_gt_seq.cpu().numpy())
                # gt_svg_f.write(gt_svg)
                syn_svg_merge_f.write(gt_svg)
                # gt_svg_f.close()
                if i > 0 and i % 13 == 12:
                    syn_svg_merge_f.write('<br>')

            syn_svg_merge_f.close()

        return im

def main():
    
    opts = get_parser_main_model().parse_args()
    opts.name_exp = opts.name_exp + '_' + opts.model_name
    experiment_dir = os.path.join(f"{opts.exp_path}","experiments", opts.name_exp)
    print(f"Testing on experiment {opts.name_exp}...")
    # Dump options
    test_main_model(opts)

if __name__ == "__main__":
    main()