Spaces:
Sleeping
Sleeping
File size: 10,802 Bytes
b762e56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import random
import numpy as np
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam, AdamW
from torchvision.utils import save_image
import wandb
from dataloader import get_loader
from models import util_funcs
from models.model_main import ModelMain
from options import get_parser_main_model
from data_utils.svg_utils import render
from time import time
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def train_main_model(opts):
setup_seed(opts.seed)
dir_exp = os.path.join(f"{opts.exp_path}", "experiments", opts.name_exp)
dir_sample = os.path.join(dir_exp, "samples")
dir_ckpt = os.path.join(dir_exp, "checkpoints")
dir_log = os.path.join(dir_exp, "logs")
logfile_train = open(os.path.join(dir_log, "train_loss_log.txt"), 'w')
logfile_val = open(os.path.join(dir_log, "val_loss_log.txt"), 'w')
train_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size, opts.mode)
val_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size_val, 'val')
run = wandb.init(project=opts.wandb_project_name, config=opts) # initialize wandb project
model_main = ModelMain(opts)
if torch.cuda.is_available() and opts.multi_gpu:
model_main = torch.nn.DataParallel(model_main)
if opts.continue_training:
model_main.load_state_dict(torch.load(opts.continue_ckpt)['model'])
model_main.cuda()
parameters_all = [{"params": model_main.img_encoder.parameters()}, {"params": model_main.img_decoder.parameters()},
{"params": model_main.modality_fusion.parameters()}, {"params": model_main.transformer_main.parameters()},
{"params": model_main.transformer_seqdec.parameters()}]
optimizer = AdamW(parameters_all, lr=opts.lr, betas=(opts.beta1, opts.beta2), eps=opts.eps, weight_decay=opts.weight_decay)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.997)
for epoch in range(opts.init_epoch, opts.n_epochs):
t0 = time()
for idx, data in enumerate(train_loader):
for key in data: data[key] = data[key].cuda()
ret_dict, loss_dict = model_main(data)
loss = opts.loss_w_l1 * loss_dict['img']['l1'] + opts.loss_w_pt_c * loss_dict['img']['vggpt'] + opts.kl_beta * loss_dict['kl'] \
+ loss_dict['svg']['total'] + loss_dict['svg_para']['total']
# perform optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
batches_done = epoch * len(train_loader) + idx + 1
message = (
f"Time: {'{} seconds'.format(time() - t0)}, "
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Loss: {loss.item():.6f}, "
f"img_l1_loss: {opts.loss_w_l1 * loss_dict['img']['l1'].item():.6f}, "
f"img_pt_c_loss: {opts.loss_w_pt_c * loss_dict['img']['vggpt']:.6f}, "
f"svg_total_loss: {loss_dict['svg']['total'].item():.6f}, "
f"svg_cmd_loss: {opts.loss_w_cmd * loss_dict['svg']['cmd'].item():.6f}, "
f"svg_args_loss: {opts.loss_w_args * loss_dict['svg']['args'].item():.6f}, "
f"svg_smooth_loss: {opts.loss_w_smt * loss_dict['svg']['smt'].item():.6f}, "
f"svg_aux_loss: {opts.loss_w_aux * loss_dict['svg']['aux'].item():.6f}, "
f"lr: {optimizer.param_groups[0]['lr']:.6f}, "
f"Step: {batches_done}"
)
if batches_done % opts.freq_log == 0:
logfile_train.write(message + '\n')
print(message)
if opts.wandb:
# print("Running With Wandb")
# Define the items for image and SVG losses
loss_img_items = ['l1', 'vggpt']
loss_svg_items = ['total', 'cmd', 'args', 'aux', 'smt']
# Log image loss items
for item in loss_img_items:
wandb.log({f'Loss/img_{item}': loss_dict['img'][item].item()}, step=batches_done)
# Log SVG loss items
for item in loss_svg_items:
wandb.log({f'Loss/svg_{item}': loss_dict['svg'][item].item()}, step=batches_done)
wandb.log({f'Loss/svg_para_{item}': loss_dict['svg_para'][item].item()}, step=batches_done)
# Log KL loss
wandb.log({'Loss/img_kl_loss': opts.kl_beta * loss_dict['kl'].item()}, step=batches_done)
wandb.log({
'Images/trg_img': wandb.Image(ret_dict['img']['trg'][0], caption="Target"),
'Images/img_output': wandb.Image(ret_dict['img']['out'][0], caption="Output")
}, step=batches_done)
text_table.add_data(epoch, loss, str(ret_dict['img']['ref'][0]))
wandb.log({"training_samples" : text_table})
if opts.freq_sample > 0 and batches_done % opts.freq_sample == 0:
img_sample = torch.cat((ret_dict['img']['trg'].data, ret_dict['img']['out'].data), -2)
save_file = os.path.join(dir_sample, f"train_epoch_{epoch}_batch_{batches_done}.png")
save_image(img_sample, save_file, nrow=8, normalize=True)
if opts.freq_val > 0 and batches_done % opts.freq_val == 0:
with torch.no_grad():
model_main.eval()
loss_val = {'img':{'l1':0.0, 'vggpt':0.0}, 'svg':{'total':0.0, 'cmd':0.0, 'args':0.0, 'aux':0.0},
'svg_para':{'total':0.0, 'cmd':0.0, 'args':0.0, 'aux':0.0}}
for val_idx, val_data in enumerate(val_loader):
for key in val_data: val_data[key] = val_data[key].cuda()
ret_dict_val, loss_dict_val = model_main(val_data, mode='val')
for loss_cat in ['img', 'svg']:
for key, _ in loss_val[loss_cat].items():
loss_val[loss_cat][key] += loss_dict_val[loss_cat][key]
for loss_cat in ['img', 'svg']:
for key, _ in loss_val[loss_cat].items():
loss_val[loss_cat][key] /= len(val_loader)
if opts.wandb:
for loss_cat in ['img', 'svg']:
# Iterate over keys and values in the loss dictionary
for key, value in loss_val[loss_cat].items():
# Log loss value to WandB
wandb.log({f'VAL/loss_{loss_cat}_{key}': value})
val_msg = (
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Val loss img l1: {loss_val['img']['l1']: .6f}, "
f"Val loss img pt: {loss_val['img']['vggpt']: .6f}, "
f"Val loss total: {loss_val['svg']['total']: .6f}, "
f"Val loss cmd: {loss_val['svg']['cmd']: .6f}, "
f"Val loss args: {loss_val['svg']['args']: .6f}, "
)
logfile_val.write(val_msg + "\n")
print(val_msg)
scheduler.step()
if epoch % opts.freq_ckpt == 0 and epoch >= opts.threshold_ckpt:
if opts.multi_gpu:
print(f"Saved {dir_ckpt}/{epoch}_{batches_done}.ckpt")
torch.save({'model':model_main.module.state_dict(), 'opt':optimizer.state_dict(), 'n_epoch':epoch, 'n_iter':batches_done}, f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
else:
print(f"Saved {dir_ckpt}/{epoch}_{batches_done}.ckpt")
torch.save({'model':model_main.state_dict(), 'opt':optimizer.state_dict(), 'n_epoch':epoch, 'n_iter':batches_done}, f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
if opts.wandb:
artifact = wandb.Artifact('model_main_checkpoints', type='model')
artifact.add_file(f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
run.log_artifact(artifact)
logfile_train.close()
logfile_val.close()
def backup_code(name_exp, exp_path):
os.makedirs(os.path.join(exp_path,'experiments', name_exp, 'code'), exist_ok=True)
shutil.copy('models/transformers.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'transformers.py') )
shutil.copy('models/model_main.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'model_main.py'))
shutil.copy('models/image_encoder.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'image_encoder.py'))
shutil.copy('models/image_decoder.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'image_decoder.py'))
shutil.copy('./train.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'train.py'))
shutil.copy('./options.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'options.py'))
def train(opts):
if opts.model_name == 'main_model':
train_main_model(opts)
elif opts.model_name == 'others':
train_others(opts)
else:
raise NotImplementedError
def main():
opts = get_parser_main_model().parse_args()
opts.name_exp = opts.name_exp + '_' + opts.model_name
os.makedirs(f"{opts.exp_path}/experiments", exist_ok=True)
debug = True
# Create directories
experiment_dir = os.path.join(f"{opts.exp_path}","experiments", opts.name_exp)
backup_code(opts.name_exp, opts.exp_path)
os.makedirs(experiment_dir, exist_ok=debug) # False to prevent multiple train run by mistake
os.makedirs(os.path.join(experiment_dir, "samples"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "results"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "logs"), exist_ok=True)
print(f"Training on experiment {opts.name_exp}...")
# Dump options
with open(os.path.join(experiment_dir, "opts.txt"), "w") as f:
for key, value in vars(opts).items():
f.write(str(key) + ": " + str(value) + "\n")
train(opts)
if __name__ == "__main__":
main()
|