Spaces:
Sleeping
Sleeping
File size: 29,073 Bytes
b762e56 3970cec eaf66ef 3970cec b762e56 86e64e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
from math import pi, log
from functools import wraps
from multiprocessing import context
from textwrap import indent
import models.util_funcs as util_funcs
import math, copy
import numpy as np
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Reduce
import pdb
from einops.layers.torch import Rearrange
from options import get_parser_main_model
opts = get_parser_main_model().parse_args()
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
"""
:param x: [x_len, batch_size, emb_size]
:return: [x_len, batch_size, emb_size]
"""
x = x + self.pe[:x.size(0), :].to(x.device)
return self.dropout(x)
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cache_fn(f):
cache = dict()
@wraps(f)
def cached_fn(*args, _cache = True, key = None, **kwargs):
if not _cache:
return f(*args, **kwargs)
nonlocal cache
if key in cache:
return cache[key]
result = f(*args, **kwargs)
cache[key] = result
return result
return cached_fn
def fourier_encode(x, max_freq, num_bands = 4):
'''
x: ([64, 64, 2, 1]) is between [-1,1]
max_feq is 10
num_bands is 6
'''
x = x.unsqueeze(-1)
device, dtype, orig_x = x.device, x.dtype, x
scales = torch.linspace(1., max_freq / 2, num_bands, device = device, dtype = dtype) # tensor([1.0000, 1.8000, 2.6000, 3.4000, 4.2000, 5.0000]
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] # r([[[[1.0000, 1.8000, 2.6000, 3.4000, 4.2000, 5.0000]]]],
x = x * scales * pi
x = torch.cat([x.sin(), x.cos()], dim = -1)
x = torch.cat((x, orig_x), dim = -1)
return x
class PreNorm(nn.Module):
def __init__(self, dim, fn, context_dim = None):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None
def forward(self, x, **kwargs):
x = self.norm(x)
if exists(self.norm_context):
context = kwargs['context']
normed_context = self.norm_context(context)
kwargs.update(context = normed_context)
return self.fn(x, **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Linear(dim * mult, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64, dropout = 0.,cls_conv_dim=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias = False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) # 27 to 5012*2 = 1024
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Linear(inner_dim, query_dim)
#self.cls_dim_adjust = nn.Linear(context_dim,cls_conv_dim)
def forward(self, x, context = None, mask = None, ref_cls_onehot=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = repeat(mask, 'b j k -> (b h) k j', h = h)
sim.masked_fill(mask == 0, -1e9)
# attention, what we cannot get enough of
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
return self.to_out(out), attn
class SVGEmbedding(nn.Module):
def __init__(self):
super().__init__()
self.command_embed = nn.Embedding(4, 512)
self.arg_embed = nn.Embedding(128, 128,padding_idx=0)
self.embed_fcn = nn.Linear(128 * 8, 512)
self.pos_encoding = PositionalEncoding(d_model=opts.hidden_size, max_len=opts.max_seq_len + 1)
self._init_embeddings()
def _init_embeddings(self):
nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in")
nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in")
nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in")
def forward(self, commands, args, groups=None):
S, GN,_ = commands.shape
src = self.command_embed(commands.long()).squeeze() + \
self.embed_fcn(self.arg_embed((args).long()).view(S, GN, -1)) # shift due to -1 PAD_VAL
src = self.pos_encoding(src)
return src
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(F.relu(self.dropout(self.w_1(x))))
class Transformer_decoder(nn.Module):
def __init__(self):
super().__init__()
self.SVG_embedding = SVGEmbedding()
self.command_fcn = nn.Linear(512, 4)
self.args_fcn = nn.Linear(512, 8 * 128)
c = copy.deepcopy
attn = MultiHeadedAttention(h=8, d_model=512, dropout=0.0)
ff = PositionwiseFeedForward(d_model=512, d_ff=1024, dropout=0.0)
self.decoder_layers = clones(DecoderLayer(512, c(attn), c(attn),c(ff), dropout=0.0), 6)
self.decoder_norm = nn.LayerNorm(512)
self.decoder_layers_parallel = clones(DecoderLayer(512, c(attn), c(attn), c(ff), dropout=0.0), 1)
self.decoder_norm_parallel = nn.LayerNorm(512)
if opts.ref_nshot == 52:
self.cls_embedding = nn.Embedding(96,512)
else:
self.cls_embedding = nn.Embedding(52,512)
self.cls_token = nn.Parameter(torch.zeros(1, 1, 512))
def forward(self, x, memory, trg_char, src_mask=None, tgt_mask=None):
memory = memory.unsqueeze(1)
commands = x[:, :, :1]
args = x[:, :, 1:]
x = self.SVG_embedding(commands, args).transpose(0,1)
trg_char = trg_char.long()
trg_char = self.cls_embedding(trg_char)
x[:, 0:1, :] = trg_char
tgt_mask = tgt_mask.squeeze()
for layer in self.decoder_layers:
x,attn = layer(x, memory, src_mask, tgt_mask)
out = self.decoder_norm(x)
N, S, _ = out.shape
cmd_logits = self.command_fcn(out)
args_logits = self.args_fcn(out) # shape: bs, max_len, 8, 256
args_logits = args_logits.reshape(N, S, 8, 128)
return cmd_logits,args_logits,attn
def parallel_decoder(self, cmd_logits, args_logits, memory, trg_char):
memory = memory.unsqueeze(1)
cmd_args_mask = torch.Tensor([[0, 0, 0., 0., 0., 0., 0., 0.],
[1, 1, 0., 0., 0., 0., 1., 1.],
[1, 1, 0., 0., 0., 0., 1., 1.],
[1, 1, 1., 1., 1., 1., 1., 1.]]).to(cmd_logits.device)
if opts.mode == 'train':
cmd2 = torch.argmax(cmd_logits, -1).unsqueeze(-1).transpose(0, 1)
arg2 = torch.argmax(args_logits, -1).transpose(0, 1)
cmd2paddingmask = _get_key_padding_mask(cmd2).transpose(0,1).unsqueeze(-1).to(cmd2.device)
cmd2 = cmd2 * cmd2paddingmask
args_mask = torch.matmul(F.one_hot(cmd2.long(),4).float(), cmd_args_mask).transpose(-1,-2).squeeze(-1)
arg2 = arg2 * args_mask
x = self.SVG_embedding(cmd2, arg2).transpose(0, 1)
else:
cmd2 = cmd_logits
arg2 = args_logits
cmd2paddingmask = _get_key_padding_mask(cmd2).transpose(0, 1).unsqueeze(-1).to(cmd2.device)
cmd2 = cmd2 * cmd2paddingmask
args_mask = torch.matmul(F.one_hot(cmd2.long(),4).float(), cmd_args_mask).transpose(-1, -2).squeeze(-1)
arg2 = arg2 * args_mask
x = self.SVG_embedding(cmd2, arg2).transpose(0,1)
S = x.size(1)
B = x.size(0)
tgt_mask = torch.ones(S,S).to(x.device).unsqueeze(0).repeat(B, 1, 1)
cmd2paddingmask = cmd2paddingmask.transpose(0, 1).transpose(-1, -2)
tgt_mask = tgt_mask * cmd2paddingmask
trg_char = trg_char.long()
trg_char = self.cls_embedding(trg_char)
x = torch.cat([trg_char, x],1)
x[:, 0:1, :] = trg_char
x = x[:,:opts.max_seq_len,:]
tgt_mask = tgt_mask #*tri
for layer in self.decoder_layers_parallel:
x, attn = layer(x, memory, src_mask=None, tgt_mask=tgt_mask)
out = self.decoder_norm_parallel(x)
N, S, _ = out.shape
cmd_logits = self.command_fcn(out)
args_logits = self.args_fcn(out)
args_logits = args_logits.reshape(N, S, 8, 128)
return cmd_logits, args_logits
def _get_key_padding_mask(commands, seq_dim=0):
"""
Args:
commands: Shape [S, ...]
"""
lens =[]
with torch.no_grad():
key_padding_mask = (commands == 0).cumsum(dim=seq_dim) > 0
commands=commands.transpose(0,1).squeeze(-1) #bs, opts.max_seq_len
for i in range(commands.size(0)):
try:
seqi = commands[i]#blue opts.max_seq_len
index = torch.where(seqi==0)[0][0]
except:
index=opts.max_seq_len
lens.append(index)
lens = torch.tensor(lens)+1#blue b
seqlen_mask = util_funcs.sequence_mask(lens, opts.max_seq_len)#blue b,opts.max_seq_len
return seqlen_mask
class Transformer(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels = 1,
input_axis = 2,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False,
fourier_encode_data = True,
self_per_cross_attn = 2,
final_classifier_head = True
):
"""The shape of the final attention mechanism will be:
depth * (cross attention -> self_per_cross_attn * self attention)
Args:
num_freq_bands: Number of freq bands, with original value (2 * K + 1)
depth: Depth of net.
max_freq: Maximum frequency, hyperparameter depending on how
fine the data is.
freq_base: Base for the frequency
input_channels: Number of channels for each token of the input.
input_axis: Number of axes for input data (2 for images, 3 for video)
num_latents: Number of latents, or induced set points, or centroids.
Different papers giving it different names.
latent_dim: Latent dimension.
cross_heads: Number of heads for cross attention. Paper said 1.
latent_heads: Number of heads for latent self attention, 8.
cross_dim_head: Number of dimensions per cross attention head.
latent_dim_head: Number of dimensions per latent self attention head.
num_classes: Output number of classes.
attn_dropout: Attention dropout
ff_dropout: Feedforward dropout
weight_tie_layers: Whether to weight tie layers (optional).
fourier_encode_data: Whether to auto-fourier encode the data, using
the input_axis given. defaults to True, but can be turned off
if you are fourier encoding the data yourself.
self_per_cross_attn: Number of self attention blocks per cross attn.
final_classifier_head: mean pool and project embeddings to number of classes (num_classes) at the end
"""
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
self.fourier_encode_data = fourier_encode_data
fourier_channels = (input_axis * ((num_freq_bands * 2) + 1)) if fourier_encode_data else 0 # 26
input_dim = fourier_channels + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads=cross_heads, dim_head=cross_dim_head, dropout=attn_dropout), context_dim=input_dim)
get_cross_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout=ff_dropout))
get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads=latent_heads, dim_head=latent_dim_head, dropout=attn_dropout))
get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout=ff_dropout))
get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff))
#self_per_cross_attn=1
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self_attns = nn.ModuleList([])
for block_ind in range(self_per_cross_attn): #BUG 之前是2 self_per_cross_attn
self_attns.append(nn.ModuleList([
get_latent_attn(**cache_args, key = block_ind),
get_latent_ff(**cache_args, key = block_ind)
]))
self.layers.append(nn.ModuleList([
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
self_attns
]))
get_cross_attn2 = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim)
get_cross_ff2 = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_latent_attn2 = lambda: PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head, dropout = attn_dropout))
get_latent_ff2 = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_cross_attn2, get_cross_ff2, get_latent_attn2, get_latent_ff2 = map(cache_fn, (get_cross_attn2, get_cross_ff2, get_latent_attn2, get_latent_ff2))
self.layers_cnnsvg = nn.ModuleList([])
for i in range(1):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self_attns2 = nn.ModuleList([])
for block_ind in range(self_per_cross_attn):
self_attns2.append(nn.ModuleList([
get_latent_attn2(**cache_args, key = block_ind),
get_latent_ff2(**cache_args, key = block_ind)
]))
self.layers_cnnsvg.append(nn.ModuleList([
get_cross_attn2(**cache_args),
get_cross_ff2(**cache_args),
self_attns2
]))
self.to_logits = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes)
) if final_classifier_head else nn.Identity()
self.pre_lstm_fc = nn.Linear(10,opts.hidden_size)
self.posr = PositionalEncoding(d_model=opts.hidden_size,max_len=opts.max_seq_len)
patch_height = 2
patch_width = 2
patch_dim = 1 * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b (h p1) (w p2) c -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, 16),
)
self.SVG_embedding = SVGEmbedding()
self.cls_token = nn.Parameter(torch.zeros(1, 1, 512))
def forward(self, data, seq, ref_cls_onehot=None, mask=None, return_embeddings=True):
b, *axis, _, device, dtype = *data.shape, data.device, data.dtype
assert len(axis) == self.input_axis, 'input data must have the right number of axis' # img is 2
x = seq
commands=x[:, :, :1]
args=x[:, :, 1:]
x = self.SVG_embedding(commands, args).transpose(0,1)
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = x.size(0))
x = torch.cat([cls_tokens,x],dim = 1)
cls_one_pad = torch.ones((1,1,1)).to(x.device).repeat(x.size(0),1,1)
mask = torch.cat([cls_one_pad,mask],dim=-1)
self_atten = []
for cross_attn, cross_ff, self_attns in self.layers:
for self_attn, self_ff in self_attns:
x_,atten = self_attn(x,mask=mask)
x = x_ + x
self_atten.append(atten)
x = self_ff(x) + x
x = x + torch.randn_like(x) # add a perturbation
return x, self_atten
def att_residual(self, x, mask=None):
for cross_attn, cross_ff, self_attns in self.layers_cnnsvg:
for self_attn, self_ff in self_attns:
x_, atten = self_attn(x)
x = x_ + x
x = self_ff(x) + x
return x
def loss(self, cmd_logits, args_logits, trg_seq, trg_seqlen, trg_pts_aux):
'''
Inputs:
cmd_logits: [b, 51, 4]
args_logits: [b, 51, 6]
'''
cmd_args_mask = torch.Tensor([[0, 0, 0., 0., 0., 0., 0., 0.],
[1, 1, 0., 0., 0., 0., 1., 1.],
[1, 1, 0., 0., 0., 0., 1., 1.],
[1, 1, 1., 1., 1., 1., 1., 1.]]).to(cmd_logits.device)
tgt_commands = trg_seq[:,:,:1].transpose(0,1)
tgt_args = trg_seq[:,:,1:].transpose(0,1)
seqlen_mask = util_funcs.sequence_mask(trg_seqlen, opts.max_seq_len).unsqueeze(-1)
seqlen_mask2 = seqlen_mask.repeat(1,1,4)# NOTE b,501,4
seqlen_mask4 = seqlen_mask.repeat(1,1,8)
seqlen_mask3 = seqlen_mask.unsqueeze(-1).repeat(1,1,8,128)
tgt_commands_onehot = F.one_hot(tgt_commands, 4)
tgt_args_onehot = F.one_hot(tgt_args, 128)
args_mask = torch.matmul(tgt_commands_onehot.float(),cmd_args_mask).squeeze()
loss_cmd = torch.sum(- tgt_commands_onehot.squeeze() * F.log_softmax(cmd_logits, -1), -1)
loss_cmd = torch.mul(loss_cmd, seqlen_mask.squeeze())
loss_cmd = torch.mean(torch.sum(loss_cmd/trg_seqlen.unsqueeze(-1),-1))
loss_args = (torch.sum(-tgt_args_onehot*F.log_softmax(args_logits,-1),-1)*seqlen_mask4*args_mask)
loss_args = torch.mean(loss_args,dim=-1,keepdim=False)
loss_args = torch.mean(torch.sum(loss_args/trg_seqlen.unsqueeze(-1),-1))
SE_mask = torch.Tensor([[1, 1],
[0, 0],
[1, 1],
[1, 1]]).to(cmd_logits.device)
SE_args_mask = torch.matmul(tgt_commands_onehot.float(),SE_mask).squeeze().unsqueeze(-1)
args_prob = F.softmax(args_logits, -1)
args_end = args_prob[:,:,6:]
args_end_shifted = torch.cat((torch.zeros(args_end.size(0),1,args_end.size(2),args_end.size(3)).to(args_end.device),args_end),1)
args_end_shifted = args_end_shifted[:,:opts.max_seq_len,:,:]
args_end_shifted = args_end_shifted*SE_args_mask + args_end*(1-SE_args_mask)
args_start = args_prob[:,:,:2]
seqlen_mask5 = util_funcs.sequence_mask(trg_seqlen-1, opts.max_seq_len).unsqueeze(-1)
seqlen_mask5 = seqlen_mask5.repeat(1,1,2)
smooth_constrained = torch.sum(torch.pow((args_end_shifted - args_start), 2), -1) * seqlen_mask5
smooth_constrained = torch.mean(smooth_constrained, dim=-1, keepdim=False)
smooth_constrained = torch.mean(torch.sum(smooth_constrained / (trg_seqlen - 1).unsqueeze(-1), -1))
args_prob2 = F.softmax(args_logits / 0.1, -1)
c = torch.argmax(args_prob2,-1).unsqueeze(-1).float() - args_prob2.detach()
p_argmax = args_prob2 + c
p_argmax = torch.mean(p_argmax,-1)
control_pts = denumericalize(p_argmax)
p0 = control_pts[:,:,:2]
p1 = control_pts[:,:,2:4]
p2 = control_pts[:,:,4:6]
p3 = control_pts[:,:,6:8]
line_mask = (tgt_commands==2).float() + (tgt_commands==1).float()
curve_mask = (tgt_commands==3).float()
t=0.25
aux_pts_line = p0 + t*(p3-p0)
for t in [0.5,0.75]:
coord_t = p0 + t*(p3-p0)
aux_pts_line = torch.cat((aux_pts_line,coord_t),-1)
aux_pts_line = aux_pts_line*line_mask
t=0.25
aux_pts_curve = (1-t)*(1-t)*(1-t)*p0 + 3*t*(1-t)*(1-t)*p1 + 3*t*t*(1-t)*p2 + t*t*t*p3
for t in [0.5, 0.75]:
coord_t = (1-t)*(1-t)*(1-t)*p0 + 3*t*(1-t)*(1-t)*p1 + 3*t*t*(1-t)*p2 + t*t*t*p3
aux_pts_curve = torch.cat((aux_pts_curve,coord_t),-1)
aux_pts_curve = aux_pts_curve * curve_mask
aux_pts_predict = aux_pts_curve + aux_pts_line
seqlen_mask_aux = util_funcs.sequence_mask(trg_seqlen - 1, opts.max_seq_len).unsqueeze(-1)
aux_pts_loss = torch.pow((aux_pts_predict - trg_pts_aux), 2) * seqlen_mask_aux
loss_aux = torch.mean(aux_pts_loss, dim=-1, keepdim=False)
loss_aux = torch.mean(torch.sum(loss_aux / trg_seqlen.unsqueeze(-1), -1))
loss = opts.loss_w_cmd * loss_cmd + opts.loss_w_args * loss_args + opts.loss_w_aux * loss_aux + opts.loss_w_smt * smooth_constrained
svg_losses = {}
svg_losses['loss_total'] = loss
svg_losses["loss_cmd"] = loss_cmd
svg_losses["loss_args"] = loss_args
svg_losses["loss_smt"] = smooth_constrained
svg_losses["loss_aux"] = loss_aux
return svg_losses
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
attn = self.self_attn.attn
return self.sublayer[2](x, self.feed_forward),attn
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def numericalize(cmd, n=128):
"""NOTE: shall only be called after normalization"""
# assert np.max(cmd.origin) <= 1.0 and np.min(cmd.origin) >= -1.0
cmd = (cmd / 30 * n).round().clip(min=0, max=n-1).int()
return cmd
def denumericalize(cmd, n=128):
cmd = cmd / n * 30
return cmd
def attention(query, key, value, mask=None, trg_tri_mask=None,dropout=None, posr=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if posr is not None:
posr = posr.unsqueeze(1)
scores = scores + posr
if mask is not None:
try:
scores = scores.masked_fill(mask == 0, -1e9) # note mask: b,1,501,501 scores: b, head, 501,501
except Exception as e:
print("Shape: ",scores.shape)
print("Error: ",e)
import pdb; pdb.set_trace()
if trg_tri_mask is not None:
scores = scores.masked_fill(trg_tri_mask == 0, -1e9)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h #32
self.h = h #8
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None,trg_tri_mask=None, posr=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0) #16
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(query, key, value, mask=mask,trg_tri_mask=trg_tri_mask,
dropout=self.dropout, posr=posr)
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = nn.LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
x_norm=self.norm(x)
return x + self.dropout(sublayer(x_norm))#+ self.augs(x_norm)
if __name__ == '__main__':
model = Transformer(
input_channels = 1, # number of channels for each token of the input
input_axis = 2, # number of axis for input data (2 for images, 3 for video)
num_freq_bands = 6, # number of freq bands, with original value (2 * K + 1)
max_freq = 10., # maximum frequency, hyperparameter depending on how fine the data is
depth = 6, # depth of net. The shape of the final attention mechanism will be:
# depth * (cross attention -> self_per_cross_attn * self attention)
num_latents = 256, # number of latents, or induced set points, or centroids. different papers giving it different names
latent_dim = 512, # latent dimension
cross_heads = 1, # number of heads for cross attention. paper said 1
latent_heads = 8, # number of heads for latent self attention, 8
cross_dim_head = 64, # number of dimensions per cross attention head
latent_dim_head = 64, # number of dimensions per latent self attention head
num_classes = 1000, # output number of classes
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False, # whether to weight tie layers (optional, as indicated in the diagram)
fourier_encode_data = True, # whether to auto-fourier encode the data, using the input_axis given. defaults to True, but can be turned off if you are fourier encoding the data yourself
self_per_cross_attn = 2 # number of self attention blocks per cross attention
)
img = torch.randn(1, 224, 224, 3) # 1 imagenet image, pixelized
model(img) # (1, 1000) |