File size: 29,073 Bytes
b762e56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3970cec
eaf66ef
3970cec
 
b762e56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86e64e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
from math import pi, log
from functools import wraps
from multiprocessing import context
from textwrap import indent
import models.util_funcs as util_funcs
import math, copy
import numpy as np
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Reduce
import pdb
from einops.layers.torch import Rearrange
from options import get_parser_main_model
opts = get_parser_main_model().parse_args()

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        """
        :param x: [x_len, batch_size, emb_size]
        :return: [x_len, batch_size, emb_size]
        """
        x = x + self.pe[:x.size(0), :].to(x.device)
        return self.dropout(x)

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def cache_fn(f):
    cache = dict()
    @wraps(f)
    def cached_fn(*args, _cache = True, key = None, **kwargs):
        if not _cache:
            return f(*args, **kwargs)
        nonlocal cache
        if key in cache:
            return cache[key]
        result = f(*args, **kwargs)
        cache[key] = result
        return result
    return cached_fn

def fourier_encode(x, max_freq, num_bands = 4):
    '''
    x: ([64, 64, 2, 1]) is between [-1,1]
    max_feq is 10
    num_bands is 6
    '''
    
    x = x.unsqueeze(-1)
    device, dtype, orig_x = x.device, x.dtype, x

    scales = torch.linspace(1., max_freq / 2, num_bands, device = device, dtype = dtype) # tensor([1.0000, 1.8000, 2.6000, 3.4000, 4.2000, 5.0000]
    scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] # r([[[[1.0000, 1.8000, 2.6000, 3.4000, 4.2000, 5.0000]]]],

    x = x * scales * pi
    x = torch.cat([x.sin(), x.cos()], dim = -1)
    
    x = torch.cat((x, orig_x), dim = -1)
    return x

class PreNorm(nn.Module):
    def __init__(self, dim, fn, context_dim = None):
        super().__init__()
        self.fn = fn
        self.norm = nn.LayerNorm(dim)
        self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None

    def forward(self, x, **kwargs):
        x = self.norm(x)

        if exists(self.norm_context):
            context = kwargs['context']
            normed_context = self.norm_context(context)
            kwargs.update(context = normed_context)

        return self.fn(x, **kwargs)

class GEGLU(nn.Module):
    def forward(self, x):
        x, gates = x.chunk(2, dim = -1)
        return x * F.gelu(gates)

class FeedForward(nn.Module):
    def __init__(self, dim, mult = 4, dropout = 0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, dim * mult * 2),
            GEGLU(),
            nn.Linear(dim * mult, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)

class Attention(nn.Module):
    def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64, dropout = 0.,cls_conv_dim=None):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head ** -0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias = False)
        self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) # 27 to 5012*2 = 1024

        self.dropout = nn.Dropout(dropout)
        self.to_out = nn.Linear(inner_dim, query_dim)
        #self.cls_dim_adjust = nn.Linear(context_dim,cls_conv_dim)

    def forward(self, x, context = None, mask = None, ref_cls_onehot=None):

        h = self.heads
        q = self.to_q(x)
        context = default(context, x)
        k, v = self.to_kv(context).chunk(2, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

        if exists(mask): 
            mask = repeat(mask, 'b j k -> (b h) k j', h = h)
            sim.masked_fill(mask == 0, -1e9)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim = -1)
        attn = self.dropout(attn)
        out = einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
        return self.to_out(out), attn


class SVGEmbedding(nn.Module):
    def __init__(self):
        super().__init__()
        self.command_embed = nn.Embedding(4, 512)
        self.arg_embed = nn.Embedding(128, 128,padding_idx=0)
        self.embed_fcn = nn.Linear(128 * 8, 512)
        self.pos_encoding = PositionalEncoding(d_model=opts.hidden_size, max_len=opts.max_seq_len + 1)
        self._init_embeddings()

    def _init_embeddings(self):
        nn.init.kaiming_normal_(self.command_embed.weight, mode="fan_in")
        nn.init.kaiming_normal_(self.arg_embed.weight, mode="fan_in")
        nn.init.kaiming_normal_(self.embed_fcn.weight, mode="fan_in")


    def forward(self, commands, args, groups=None):
        
        S, GN,_ = commands.shape 
        src = self.command_embed(commands.long()).squeeze() + \
            self.embed_fcn(self.arg_embed((args).long()).view(S, GN, -1)) # shift due to -1 PAD_VAL

        src = self.pos_encoding(src)

        return src
class PositionwiseFeedForward(nn.Module):
    "Implements FFN equation."

    def __init__(self, d_model, d_ff, dropout):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Linear(d_model, d_ff)
        self.w_2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        return self.w_2(F.relu(self.dropout(self.w_1(x))))

class Transformer_decoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.SVG_embedding = SVGEmbedding()
        self.command_fcn = nn.Linear(512, 4)
        self.args_fcn = nn.Linear(512, 8 * 128)
        c = copy.deepcopy
        attn = MultiHeadedAttention(h=8, d_model=512, dropout=0.0)
        ff = PositionwiseFeedForward(d_model=512, d_ff=1024, dropout=0.0)
        self.decoder_layers = clones(DecoderLayer(512, c(attn), c(attn),c(ff), dropout=0.0), 6)
        self.decoder_norm = nn.LayerNorm(512)
        self.decoder_layers_parallel = clones(DecoderLayer(512, c(attn), c(attn), c(ff), dropout=0.0), 1)
        self.decoder_norm_parallel = nn.LayerNorm(512)
        if opts.ref_nshot == 52:
            self.cls_embedding = nn.Embedding(96,512)
        else:
            self.cls_embedding = nn.Embedding(52,512)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, 512))

    def forward(self, x, memory, trg_char, src_mask=None, tgt_mask=None):

        memory = memory.unsqueeze(1)
        commands = x[:, :, :1]
        args = x[:, :, 1:]
        x = self.SVG_embedding(commands, args).transpose(0,1)
        trg_char = trg_char.long()
        trg_char = self.cls_embedding(trg_char)
        x[:, 0:1, :] = trg_char 
        tgt_mask = tgt_mask.squeeze()
        for layer in self.decoder_layers:
            x,attn = layer(x, memory, src_mask, tgt_mask) 
        out = self.decoder_norm(x)
        N, S, _ = out.shape
        cmd_logits = self.command_fcn(out)
        args_logits = self.args_fcn(out) # shape: bs, max_len, 8, 256
        args_logits = args_logits.reshape(N, S, 8, 128)
        return cmd_logits,args_logits,attn
    
    def parallel_decoder(self, cmd_logits, args_logits, memory, trg_char):

        memory = memory.unsqueeze(1)
        cmd_args_mask =  torch.Tensor([[0, 0, 0., 0., 0., 0., 0., 0.],
                                       [1, 1, 0., 0., 0., 0., 1., 1.],
                                       [1, 1, 0., 0., 0., 0., 1., 1.],
                                       [1, 1, 1., 1., 1., 1., 1., 1.]]).to(cmd_logits.device)  
        if opts.mode == 'train':
            cmd2 = torch.argmax(cmd_logits, -1).unsqueeze(-1).transpose(0, 1) 
            arg2 = torch.argmax(args_logits, -1).transpose(0, 1)

            cmd2paddingmask = _get_key_padding_mask(cmd2).transpose(0,1).unsqueeze(-1).to(cmd2.device)  
            cmd2 = cmd2 * cmd2paddingmask
            args_mask = torch.matmul(F.one_hot(cmd2.long(),4).float(), cmd_args_mask).transpose(-1,-2).squeeze(-1)
            arg2 = arg2 * args_mask     

            x = self.SVG_embedding(cmd2, arg2).transpose(0, 1)
        else:
            cmd2 = cmd_logits
            arg2 = args_logits

            cmd2paddingmask = _get_key_padding_mask(cmd2).transpose(0, 1).unsqueeze(-1).to(cmd2.device)
            cmd2 = cmd2 * cmd2paddingmask
            args_mask = torch.matmul(F.one_hot(cmd2.long(),4).float(), cmd_args_mask).transpose(-1, -2).squeeze(-1) 
            arg2 = arg2 * args_mask

            x = self.SVG_embedding(cmd2, arg2).transpose(0,1)

        S = x.size(1)
        B = x.size(0)
        tgt_mask = torch.ones(S,S).to(x.device).unsqueeze(0).repeat(B, 1, 1)
        cmd2paddingmask = cmd2paddingmask.transpose(0, 1).transpose(-1, -2)
        tgt_mask  = tgt_mask * cmd2paddingmask

        trg_char = trg_char.long()
        trg_char = self.cls_embedding(trg_char)
        
        x = torch.cat([trg_char, x],1)
        x[:, 0:1, :] = trg_char
        x = x[:,:opts.max_seq_len,:]
        tgt_mask = tgt_mask #*tri
        for layer in self.decoder_layers_parallel:
            x, attn = layer(x, memory, src_mask=None, tgt_mask=tgt_mask)
        out = self.decoder_norm_parallel(x)

        N, S, _ = out.shape
        cmd_logits = self.command_fcn(out)
        args_logits = self.args_fcn(out)
        args_logits = args_logits.reshape(N, S, 8, 128)

        return cmd_logits, args_logits


def _get_key_padding_mask(commands, seq_dim=0):
    """
    Args:
        commands: Shape [S, ...]
    """
    lens =[]
    with torch.no_grad():
        key_padding_mask = (commands == 0).cumsum(dim=seq_dim) > 0
        commands=commands.transpose(0,1).squeeze(-1) #bs, opts.max_seq_len
        for i in range(commands.size(0)):
            try:
                seqi = commands[i]#blue opts.max_seq_len
                index = torch.where(seqi==0)[0][0]
               
            except:
                index=opts.max_seq_len
                
            lens.append(index)
        lens = torch.tensor(lens)+1#blue b
        seqlen_mask = util_funcs.sequence_mask(lens, opts.max_seq_len)#blue b,opts.max_seq_len
        return seqlen_mask

class Transformer(nn.Module):
    def __init__(
        self,
        *,
        num_freq_bands,
        depth,
        max_freq,
        input_channels = 1,
        input_axis = 2,
        num_latents = 512,
        latent_dim = 512,
        cross_heads = 1,
        latent_heads = 8,
        cross_dim_head = 64,
        latent_dim_head = 64,
        num_classes = 1000,
        attn_dropout = 0.,
        ff_dropout = 0.,
        weight_tie_layers = False,
        fourier_encode_data = True,
        self_per_cross_attn = 2,
        final_classifier_head = True
    ):
        """The shape of the final attention mechanism will be:
        depth * (cross attention -> self_per_cross_attn * self attention)

        Args:
          num_freq_bands: Number of freq bands, with original value (2 * K + 1)
          depth: Depth of net.
          max_freq: Maximum frequency, hyperparameter depending on how
              fine the data is.
          freq_base: Base for the frequency
          input_channels: Number of channels for each token of the input.
          input_axis: Number of axes for input data (2 for images, 3 for video)
          num_latents: Number of latents, or induced set points, or centroids.
              Different papers giving it different names.
          latent_dim: Latent dimension.
          cross_heads: Number of heads for cross attention. Paper said 1.
          latent_heads: Number of heads for latent self attention, 8.
          cross_dim_head: Number of dimensions per cross attention head.
          latent_dim_head: Number of dimensions per latent self attention head.
          num_classes: Output number of classes.
          attn_dropout: Attention dropout
          ff_dropout: Feedforward dropout
          weight_tie_layers: Whether to weight tie layers (optional).
          fourier_encode_data: Whether to auto-fourier encode the data, using
              the input_axis given. defaults to True, but can be turned off
              if you are fourier encoding the data yourself.
          self_per_cross_attn: Number of self attention blocks per cross attn.
          final_classifier_head: mean pool and project embeddings to number of classes (num_classes) at the end
        """
        super().__init__()
        self.input_axis = input_axis
        self.max_freq = max_freq
        self.num_freq_bands = num_freq_bands

        self.fourier_encode_data = fourier_encode_data
        fourier_channels = (input_axis * ((num_freq_bands * 2) + 1)) if fourier_encode_data else 0 # 26
        input_dim = fourier_channels + input_channels

        self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))

        get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads=cross_heads, dim_head=cross_dim_head, dropout=attn_dropout), context_dim=input_dim)
        get_cross_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout=ff_dropout))
        get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads=latent_heads, dim_head=latent_dim_head, dropout=attn_dropout))
        get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout=ff_dropout))

        get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff))


        #self_per_cross_attn=1
        self.layers = nn.ModuleList([])
        for i in range(depth):
            should_cache = i > 0 and weight_tie_layers
            cache_args = {'_cache': should_cache}

            self_attns = nn.ModuleList([])

            for block_ind in range(self_per_cross_attn): #BUG 之前是2  self_per_cross_attn
                self_attns.append(nn.ModuleList([
                    get_latent_attn(**cache_args, key = block_ind),
                    get_latent_ff(**cache_args, key = block_ind)
                ]))

            self.layers.append(nn.ModuleList([
                get_cross_attn(**cache_args),
                get_cross_ff(**cache_args),
                self_attns
            ]))


        get_cross_attn2 = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim)
        get_cross_ff2 = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
        get_latent_attn2 = lambda: PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head, dropout = attn_dropout))
        get_latent_ff2 = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))

        get_cross_attn2, get_cross_ff2, get_latent_attn2, get_latent_ff2 = map(cache_fn, (get_cross_attn2, get_cross_ff2, get_latent_attn2, get_latent_ff2))

        self.layers_cnnsvg = nn.ModuleList([])
        for i in range(1):
            should_cache = i > 0 and weight_tie_layers
            cache_args = {'_cache': should_cache}

            self_attns2 = nn.ModuleList([])

            for block_ind in range(self_per_cross_attn): 
                self_attns2.append(nn.ModuleList([
                    get_latent_attn2(**cache_args, key = block_ind),
                    get_latent_ff2(**cache_args, key = block_ind)
                ]))

            self.layers_cnnsvg.append(nn.ModuleList([
                get_cross_attn2(**cache_args),
                get_cross_ff2(**cache_args),
                self_attns2
            ]))

        self.to_logits = nn.Sequential(
            Reduce('b n d -> b d', 'mean'),
            nn.LayerNorm(latent_dim),
            nn.Linear(latent_dim, num_classes)
        ) if final_classifier_head else nn.Identity()
        self.pre_lstm_fc = nn.Linear(10,opts.hidden_size)
        self.posr = PositionalEncoding(d_model=opts.hidden_size,max_len=opts.max_seq_len)
        
        patch_height = 2
        patch_width = 2
        patch_dim =  1 * patch_height * patch_width
        self.to_patch_embedding = nn.Sequential(
            Rearrange('b (h p1) (w p2) c -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
            nn.Linear(patch_dim, 16),
        )

        self.SVG_embedding = SVGEmbedding()
        self.cls_token = nn.Parameter(torch.zeros(1, 1, 512))

    def forward(self, data, seq, ref_cls_onehot=None, mask=None, return_embeddings=True):

        b, *axis, _, device, dtype = *data.shape, data.device, data.dtype
        assert len(axis) == self.input_axis, 'input data must have the right number of axis' # img is 2
        x = seq
        commands=x[:, :, :1]
        args=x[:, :, 1:]
        x = self.SVG_embedding(commands, args).transpose(0,1)
        cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = x.size(0))
        x = torch.cat([cls_tokens,x],dim = 1)
        cls_one_pad = torch.ones((1,1,1)).to(x.device).repeat(x.size(0),1,1)
        mask = torch.cat([cls_one_pad,mask],dim=-1)
        self_atten = []
        for cross_attn, cross_ff, self_attns in self.layers:
            for self_attn, self_ff in self_attns: 
                x_,atten = self_attn(x,mask=mask)
                x = x_ + x 
                self_atten.append(atten)
                x = self_ff(x) + x
        x = x + torch.randn_like(x) # add a perturbation
        return x, self_atten
    
    def att_residual(self, x, mask=None):

        for cross_attn, cross_ff, self_attns in self.layers_cnnsvg:
            for self_attn, self_ff in self_attns: 
                x_, atten = self_attn(x)  
                x = x_ + x 
                x = self_ff(x) + x
        return x

        

    def loss(self, cmd_logits, args_logits, trg_seq, trg_seqlen, trg_pts_aux):
        '''
        Inputs:
        cmd_logits: [b, 51, 4]
        args_logits: [b, 51, 6]
        '''
        cmd_args_mask =  torch.Tensor([[0, 0, 0., 0., 0., 0., 0., 0.],
                                       [1, 1, 0., 0., 0., 0., 1., 1.],
                                       [1, 1, 0., 0., 0., 0., 1., 1.],
                                       [1, 1, 1., 1., 1., 1., 1., 1.]]).to(cmd_logits.device)  
        
        tgt_commands = trg_seq[:,:,:1].transpose(0,1)
        tgt_args = trg_seq[:,:,1:].transpose(0,1)
        
        seqlen_mask = util_funcs.sequence_mask(trg_seqlen, opts.max_seq_len).unsqueeze(-1)
        seqlen_mask2 = seqlen_mask.repeat(1,1,4)# NOTE b,501,4
        seqlen_mask4 = seqlen_mask.repeat(1,1,8)
        seqlen_mask3 = seqlen_mask.unsqueeze(-1).repeat(1,1,8,128)
        
        
        tgt_commands_onehot = F.one_hot(tgt_commands, 4)
        tgt_args_onehot = F.one_hot(tgt_args, 128)
       
        args_mask = torch.matmul(tgt_commands_onehot.float(),cmd_args_mask).squeeze()


        loss_cmd = torch.sum(- tgt_commands_onehot.squeeze() * F.log_softmax(cmd_logits, -1), -1)
        loss_cmd = torch.mul(loss_cmd, seqlen_mask.squeeze())
        loss_cmd = torch.mean(torch.sum(loss_cmd/trg_seqlen.unsqueeze(-1),-1))
        
        loss_args = (torch.sum(-tgt_args_onehot*F.log_softmax(args_logits,-1),-1)*seqlen_mask4*args_mask)
     
        loss_args = torch.mean(loss_args,dim=-1,keepdim=False)
        loss_args = torch.mean(torch.sum(loss_args/trg_seqlen.unsqueeze(-1),-1))

        SE_mask =  torch.Tensor([[1, 1],
                                 [0, 0],
                                 [1, 1],
                                 [1, 1]]).to(cmd_logits.device)  
        
        SE_args_mask = torch.matmul(tgt_commands_onehot.float(),SE_mask).squeeze().unsqueeze(-1)
        
        
        args_prob = F.softmax(args_logits, -1)
        args_end = args_prob[:,:,6:]
        args_end_shifted = torch.cat((torch.zeros(args_end.size(0),1,args_end.size(2),args_end.size(3)).to(args_end.device),args_end),1)
        args_end_shifted = args_end_shifted[:,:opts.max_seq_len,:,:]
        args_end_shifted = args_end_shifted*SE_args_mask + args_end*(1-SE_args_mask)
        
        args_start = args_prob[:,:,:2]

        seqlen_mask5 = util_funcs.sequence_mask(trg_seqlen-1, opts.max_seq_len).unsqueeze(-1)
        seqlen_mask5 = seqlen_mask5.repeat(1,1,2)
       
        smooth_constrained = torch.sum(torch.pow((args_end_shifted - args_start), 2), -1) * seqlen_mask5
        smooth_constrained = torch.mean(smooth_constrained, dim=-1, keepdim=False)
        smooth_constrained = torch.mean(torch.sum(smooth_constrained / (trg_seqlen - 1).unsqueeze(-1), -1))

        args_prob2 = F.softmax(args_logits / 0.1, -1)

        c = torch.argmax(args_prob2,-1).unsqueeze(-1).float() - args_prob2.detach()
        p_argmax = args_prob2 + c
        p_argmax = torch.mean(p_argmax,-1)       
        control_pts = denumericalize(p_argmax)
        
        p0 = control_pts[:,:,:2]
        p1 = control_pts[:,:,2:4]
        p2 = control_pts[:,:,4:6]
        p3 = control_pts[:,:,6:8]
        
        line_mask = (tgt_commands==2).float() + (tgt_commands==1).float() 
        curve_mask = (tgt_commands==3).float() 
        
        t=0.25
        aux_pts_line = p0 + t*(p3-p0)
        for t in [0.5,0.75]:
            coord_t = p0 + t*(p3-p0)
            aux_pts_line = torch.cat((aux_pts_line,coord_t),-1)
        aux_pts_line = aux_pts_line*line_mask
        
        t=0.25
        aux_pts_curve = (1-t)*(1-t)*(1-t)*p0 + 3*t*(1-t)*(1-t)*p1 + 3*t*t*(1-t)*p2 + t*t*t*p3
        for t in [0.5, 0.75]:
            coord_t = (1-t)*(1-t)*(1-t)*p0 + 3*t*(1-t)*(1-t)*p1 + 3*t*t*(1-t)*p2 + t*t*t*p3
            aux_pts_curve = torch.cat((aux_pts_curve,coord_t),-1)
        aux_pts_curve = aux_pts_curve * curve_mask
        
        
        aux_pts_predict = aux_pts_curve + aux_pts_line
        seqlen_mask_aux = util_funcs.sequence_mask(trg_seqlen - 1, opts.max_seq_len).unsqueeze(-1)
        aux_pts_loss = torch.pow((aux_pts_predict - trg_pts_aux), 2) * seqlen_mask_aux
        
        loss_aux = torch.mean(aux_pts_loss, dim=-1, keepdim=False)
        loss_aux = torch.mean(torch.sum(loss_aux / trg_seqlen.unsqueeze(-1), -1))

        
        loss = opts.loss_w_cmd * loss_cmd + opts.loss_w_args * loss_args + opts.loss_w_aux * loss_aux + opts.loss_w_smt * smooth_constrained 

        svg_losses = {}
        svg_losses['loss_total'] = loss
        svg_losses["loss_cmd"] = loss_cmd
        svg_losses["loss_args"] = loss_args
        svg_losses["loss_smt"] = smooth_constrained
        svg_losses["loss_aux"] = loss_aux

        return svg_losses
    
class DecoderLayer(nn.Module):
    "Decoder is made of self-attn, src-attn, and feed forward (defined below)"

    def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.size = size
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        self.sublayer = clones(SublayerConnection(size, dropout), 3)

    def forward(self, x, memory, src_mask, tgt_mask):
        "Follow Figure 1 (right) for connections."
        m = memory
        x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
        x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
        attn = self.self_attn.attn
        return self.sublayer[2](x, self.feed_forward),attn

def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
    return torch.from_numpy(subsequent_mask) == 0

def numericalize(cmd, n=128):
    """NOTE: shall only be called after normalization"""
    # assert np.max(cmd.origin) <= 1.0 and np.min(cmd.origin) >= -1.0 
    cmd = (cmd / 30 * n).round().clip(min=0, max=n-1).int()
    return cmd

def denumericalize(cmd, n=128):
    cmd = cmd / n * 30 
    return cmd

def attention(query, key, value, mask=None, trg_tri_mask=None,dropout=None, posr=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)

    if posr is not None:
        posr = posr.unsqueeze(1)
        scores = scores + posr

    if mask is not None:
        try:
            scores = scores.masked_fill(mask == 0, -1e9) # note mask: b,1,501,501  scores: b, head, 501,501
        except Exception as e:
            print("Shape: ",scores.shape)
            print("Error: ",e)
            import pdb; pdb.set_trace()

    if trg_tri_mask is not None:
        scores = scores.masked_fill(trg_tri_mask == 0, -1e9) 
    
    p_attn = F.softmax(scores, dim=-1)

    if dropout is not None:
        p_attn = dropout(p_attn)

    return torch.matmul(p_attn, value), p_attn


class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h #32
        self.h = h #8
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None,trg_tri_mask=None, posr=None):
        "Implements Figure 2"

        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0) #16

        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        x, self.attn = attention(query, key, value, mask=mask,trg_tri_mask=trg_tri_mask,
                                 dropout=self.dropout, posr=posr)

        x = x.transpose(1, 2).contiguous() \
            .view(nbatches, -1, self.h * self.d_k)

        return self.linears[-1](x)

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

class SublayerConnection(nn.Module):
    """
    A residual connection followed by a layer norm.
    Note for code simplicity the norm is first as opposed to last.
    """

    def __init__(self, size, dropout):
        super(SublayerConnection, self).__init__()
        self.norm = nn.LayerNorm(size)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, sublayer):
        "Apply residual connection to any sublayer with the same size."
        x_norm=self.norm(x)
        return x + self.dropout(sublayer(x_norm))#+ self.augs(x_norm)


if __name__ == '__main__':
    model = Transformer(
        input_channels = 1,          # number of channels for each token of the input
        input_axis = 2,              # number of axis for input data (2 for images, 3 for video)
        num_freq_bands = 6,          # number of freq bands, with original value (2 * K + 1)
        max_freq = 10.,              # maximum frequency, hyperparameter depending on how fine the data is
        depth = 6,                   # depth of net. The shape of the final attention mechanism will be:
                                    #   depth * (cross attention -> self_per_cross_attn * self attention)
        num_latents = 256,           # number of latents, or induced set points, or centroids. different papers giving it different names
        latent_dim = 512,            # latent dimension
        cross_heads = 1,             # number of heads for cross attention. paper said 1
        latent_heads = 8,            # number of heads for latent self attention, 8
        cross_dim_head = 64,         # number of dimensions per cross attention head
        latent_dim_head = 64,        # number of dimensions per latent self attention head
        num_classes = 1000,          # output number of classes
        attn_dropout = 0.,
        ff_dropout = 0.,
        weight_tie_layers = False,   # whether to weight tie layers (optional, as indicated in the diagram)
        fourier_encode_data = True,  # whether to auto-fourier encode the data, using the input_axis given. defaults to True, but can be turned off if you are fourier encoding the data yourself
        self_per_cross_attn = 2      # number of self attention blocks per cross attention
    )
    
    img = torch.randn(1, 224, 224, 3) # 1 imagenet image, pixelized

    model(img) # (1, 1000)