ThaiVecFont / train.py
microhum's picture
map location model to cpu
e0c5376
raw
history blame
10.8 kB
import os
import random
import numpy as np
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam, AdamW
from torchvision.utils import save_image
import wandb
from dataloader import get_loader
from models import util_funcs
from models.model_main import ModelMain
from options import get_parser_main_model
from data_utils.svg_utils import render
from time import time
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def train_main_model(opts):
setup_seed(opts.seed)
dir_exp = os.path.join(f"{opts.exp_path}", "experiments", opts.name_exp)
dir_sample = os.path.join(dir_exp, "samples")
dir_ckpt = os.path.join(dir_exp, "checkpoints")
dir_log = os.path.join(dir_exp, "logs")
logfile_train = open(os.path.join(dir_log, "train_loss_log.txt"), 'w')
logfile_val = open(os.path.join(dir_log, "val_loss_log.txt"), 'w')
train_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size, opts.mode)
val_loader = get_loader(opts.data_root, opts.img_size, opts.language, opts.char_num, opts.max_seq_len, opts.dim_seq, opts.batch_size_val, 'val')
run = wandb.init(project=opts.wandb_project_name, config=opts) # initialize wandb project
model_main = ModelMain(opts)
if torch.cuda.is_available() and opts.multi_gpu:
model_main = torch.nn.DataParallel(model_main)
if opts.continue_training:
model_main.load_state_dict(torch.load(opts.continue_ckpt)['model'])
model_main.cuda()
parameters_all = [{"params": model_main.img_encoder.parameters()}, {"params": model_main.img_decoder.parameters()},
{"params": model_main.modality_fusion.parameters()}, {"params": model_main.transformer_main.parameters()},
{"params": model_main.transformer_seqdec.parameters()}]
optimizer = AdamW(parameters_all, lr=opts.lr, betas=(opts.beta1, opts.beta2), eps=opts.eps, weight_decay=opts.weight_decay)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.997)
for epoch in range(opts.init_epoch, opts.n_epochs):
t0 = time()
for idx, data in enumerate(train_loader):
for key in data: data[key] = data[key].cuda()
ret_dict, loss_dict = model_main(data)
loss = opts.loss_w_l1 * loss_dict['img']['l1'] + opts.loss_w_pt_c * loss_dict['img']['vggpt'] + opts.kl_beta * loss_dict['kl'] \
+ loss_dict['svg']['total'] + loss_dict['svg_para']['total']
# perform optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
batches_done = epoch * len(train_loader) + idx + 1
message = (
f"Time: {'{} seconds'.format(time() - t0)}, "
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Loss: {loss.item():.6f}, "
f"img_l1_loss: {opts.loss_w_l1 * loss_dict['img']['l1'].item():.6f}, "
f"img_pt_c_loss: {opts.loss_w_pt_c * loss_dict['img']['vggpt']:.6f}, "
f"svg_total_loss: {loss_dict['svg']['total'].item():.6f}, "
f"svg_cmd_loss: {opts.loss_w_cmd * loss_dict['svg']['cmd'].item():.6f}, "
f"svg_args_loss: {opts.loss_w_args * loss_dict['svg']['args'].item():.6f}, "
f"svg_smooth_loss: {opts.loss_w_smt * loss_dict['svg']['smt'].item():.6f}, "
f"svg_aux_loss: {opts.loss_w_aux * loss_dict['svg']['aux'].item():.6f}, "
f"lr: {optimizer.param_groups[0]['lr']:.6f}, "
f"Step: {batches_done}"
)
if batches_done % opts.freq_log == 0:
logfile_train.write(message + '\n')
print(message)
if opts.wandb:
# print("Running With Wandb")
# Define the items for image and SVG losses
loss_img_items = ['l1', 'vggpt']
loss_svg_items = ['total', 'cmd', 'args', 'aux', 'smt']
# Log image loss items
for item in loss_img_items:
wandb.log({f'Loss/img_{item}': loss_dict['img'][item].item()}, step=batches_done)
# Log SVG loss items
for item in loss_svg_items:
wandb.log({f'Loss/svg_{item}': loss_dict['svg'][item].item()}, step=batches_done)
wandb.log({f'Loss/svg_para_{item}': loss_dict['svg_para'][item].item()}, step=batches_done)
# Log KL loss
wandb.log({'Loss/img_kl_loss': opts.kl_beta * loss_dict['kl'].item()}, step=batches_done)
wandb.log({
'Images/trg_img': wandb.Image(ret_dict['img']['trg'][0], caption="Target"),
'Images/img_output': wandb.Image(ret_dict['img']['out'][0], caption="Output")
}, step=batches_done)
text_table.add_data(epoch, loss, str(ret_dict['img']['ref'][0]))
wandb.log({"training_samples" : text_table})
if opts.freq_sample > 0 and batches_done % opts.freq_sample == 0:
img_sample = torch.cat((ret_dict['img']['trg'].data, ret_dict['img']['out'].data), -2)
save_file = os.path.join(dir_sample, f"train_epoch_{epoch}_batch_{batches_done}.png")
save_image(img_sample, save_file, nrow=8, normalize=True)
if opts.freq_val > 0 and batches_done % opts.freq_val == 0:
with torch.no_grad():
model_main.eval()
loss_val = {'img':{'l1':0.0, 'vggpt':0.0}, 'svg':{'total':0.0, 'cmd':0.0, 'args':0.0, 'aux':0.0},
'svg_para':{'total':0.0, 'cmd':0.0, 'args':0.0, 'aux':0.0}}
for val_idx, val_data in enumerate(val_loader):
for key in val_data: val_data[key] = val_data[key].cuda()
ret_dict_val, loss_dict_val = model_main(val_data, mode='val')
for loss_cat in ['img', 'svg']:
for key, _ in loss_val[loss_cat].items():
loss_val[loss_cat][key] += loss_dict_val[loss_cat][key]
for loss_cat in ['img', 'svg']:
for key, _ in loss_val[loss_cat].items():
loss_val[loss_cat][key] /= len(val_loader)
if opts.wandb:
for loss_cat in ['img', 'svg']:
# Iterate over keys and values in the loss dictionary
for key, value in loss_val[loss_cat].items():
# Log loss value to WandB
wandb.log({f'VAL/loss_{loss_cat}_{key}': value})
val_msg = (
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Val loss img l1: {loss_val['img']['l1']: .6f}, "
f"Val loss img pt: {loss_val['img']['vggpt']: .6f}, "
f"Val loss total: {loss_val['svg']['total']: .6f}, "
f"Val loss cmd: {loss_val['svg']['cmd']: .6f}, "
f"Val loss args: {loss_val['svg']['args']: .6f}, "
)
logfile_val.write(val_msg + "\n")
print(val_msg)
scheduler.step()
if epoch % opts.freq_ckpt == 0 and epoch >= opts.threshold_ckpt:
if opts.multi_gpu:
print(f"Saved {dir_ckpt}/{epoch}_{batches_done}.ckpt")
torch.save({'model':model_main.module.state_dict(), 'opt':optimizer.state_dict(), 'n_epoch':epoch, 'n_iter':batches_done}, f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
else:
print(f"Saved {dir_ckpt}/{epoch}_{batches_done}.ckpt")
torch.save({'model':model_main.state_dict(), 'opt':optimizer.state_dict(), 'n_epoch':epoch, 'n_iter':batches_done}, f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
if opts.wandb:
artifact = wandb.Artifact('model_main_checkpoints', type='model')
artifact.add_file(f'{dir_ckpt}/{epoch}_{batches_done}.ckpt')
run.log_artifact(artifact)
logfile_train.close()
logfile_val.close()
def backup_code(name_exp, exp_path):
os.makedirs(os.path.join(exp_path,'experiments', name_exp, 'code'), exist_ok=True)
shutil.copy('models/transformers.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'transformers.py') )
shutil.copy('models/model_main.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'model_main.py'))
shutil.copy('models/image_encoder.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'image_encoder.py'))
shutil.copy('models/image_decoder.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'image_decoder.py'))
shutil.copy('./train.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'train.py'))
shutil.copy('./options.py', os.path.join(exp_path,'experiments', name_exp, 'code', 'options.py'))
def train(opts):
if opts.model_name == 'main_model':
train_main_model(opts)
elif opts.model_name == 'others':
train_others(opts)
else:
raise NotImplementedError
def main():
opts = get_parser_main_model().parse_args()
opts.name_exp = opts.name_exp + '_' + opts.model_name
os.makedirs(f"{opts.exp_path}/experiments", exist_ok=True)
debug = True
# Create directories
experiment_dir = os.path.join(f"{opts.exp_path}","experiments", opts.name_exp)
backup_code(opts.name_exp, opts.exp_path)
os.makedirs(experiment_dir, exist_ok=debug) # False to prevent multiple train run by mistake
os.makedirs(os.path.join(experiment_dir, "samples"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "results"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "logs"), exist_ok=True)
print(f"Training on experiment {opts.name_exp}...")
# Dump options
with open(os.path.join(experiment_dir, "opts.txt"), "w") as f:
for key, value in vars(opts).items():
f.write(str(key) + ": " + str(value) + "\n")
train(opts)
if __name__ == "__main__":
main()