Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class VGG19Feats(torch.nn.Module): | |
def __init__(self, requires_grad=False): | |
super(VGG19Feats, self).__init__() | |
vgg = torchvision.models.vgg19(pretrained=True).to(device) #.cuda() | |
# vgg.eval() | |
vgg_pretrained_features = vgg.features.eval() | |
self.requires_grad = requires_grad | |
self.slice1 = torch.nn.Sequential() | |
self.slice2 = torch.nn.Sequential() | |
self.slice3 = torch.nn.Sequential() | |
self.slice4 = torch.nn.Sequential() | |
self.slice5 = torch.nn.Sequential() | |
for x in range(3): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(3, 8): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(8, 13): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(13, 22): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(22, 31): | |
self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
if not self.requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, img): | |
conv1_2 = self.slice1(img) | |
conv2_2 = self.slice2(conv1_2) | |
conv3_2 = self.slice3(conv2_2) | |
conv4_2 = self.slice4(conv3_2) | |
conv5_2 = self.slice5(conv4_2) | |
out = [conv1_2, conv2_2, conv3_2, conv4_2, conv5_2] | |
return out | |
class VGGPerceptualLoss(torch.nn.Module): | |
def __init__(self): | |
super(VGGPerceptualLoss, self).__init__() | |
self.vgg = VGG19Feats().to(device) | |
self.criterion = torch.nn.functional.l1_loss | |
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) | |
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) | |
self.weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 1.0*10/1.5] | |
def forward(self, input_img, target_img): | |
if input_img.shape[1] != 3: | |
input_img = input_img.repeat(1, 3, 1, 1) | |
target_img = target_img.repeat(1, 3, 1, 1) | |
input_img = (input_img - self.mean) / self.std | |
target_img = (target_img - self.mean) / self.std | |
x_vgg, y_vgg = self.vgg(input_img), self.vgg(target_img) | |
loss = {} | |
loss['pt_c_loss'] = self.weights[0] * self.criterion(x_vgg[0], y_vgg[0])+\ | |
self.weights[1] * self.criterion(x_vgg[1], y_vgg[1])+\ | |
self.weights[2] * self.criterion(x_vgg[2], y_vgg[2])+\ | |
self.weights[3] * self.criterion(x_vgg[3], y_vgg[3])+\ | |
self.weights[4] * self.criterion(x_vgg[4], y_vgg[4]) | |
loss['pt_s_loss'] = 0.0 | |
return loss |