# data loader for training main model import os import pickle import torch import torch.utils.data as data import torchvision.transforms as T import sys import numpy as np torch.multiprocessing.set_sharing_strategy('file_system') class SVGDataset(data.Dataset): def __init__(self, root_path, img_size=128, lang='eng', char_num=52, max_seq_len=51, dim_seq=10, transform=None, mode='train'): super().__init__() self.mode = mode self.img_size = img_size self.char_num = char_num self.max_seq_len = max_seq_len self.dim_seq = dim_seq self.trans = transform self.font_paths = [] self.dir_path = os.path.join(root_path, lang, self.mode) for root, dirs, files in os.walk(self.dir_path): depth = root.count('/') - self.dir_path.count('/') if depth == 0: for dir_name in dirs: self.font_paths.append(os.path.join(self.dir_path, dir_name)) self.font_paths.sort() print(f"Finished loading {mode} paths, number: {str(len(self.font_paths))}") def __getitem__(self, index): item = {} font_path = self.font_paths[index] item = {} item['class'] = torch.LongTensor(np.load(os.path.join(font_path, 'class.npy'))) item['seq_len'] = torch.LongTensor(np.load(os.path.join(font_path, 'seq_len.npy'))) item['sequence'] = torch.FloatTensor(np.load(os.path.join(font_path, 'sequence_relaxed.npy'))).view(self.char_num, self.max_seq_len, self.dim_seq) item['pts_aux'] = torch.FloatTensor(np.load(os.path.join(font_path, 'pts_aux.npy'))) item['rendered'] = torch.FloatTensor(np.load(os.path.join(font_path, 'rendered_' + str(self.img_size) + '.npy'))).view(self.char_num, self.img_size, self.img_size) / 255. item['rendered'] = self.trans(item['rendered']) item['font_id'] = torch.FloatTensor(np.load(os.path.join(font_path, 'font_id.npy')).astype(np.float32)) return item def __len__(self): return len(self.font_paths) def get_loader(root_path, img_size, lang, char_num, max_seq_len, dim_seq, batch_size, mode='train'): SetRange = T.Lambda(lambda X: 1. - X ) # convert [0, 1] -> [0, 1] transform = T.Compose([SetRange]) dataset = SVGDataset(root_path, img_size, lang, char_num, max_seq_len, dim_seq, transform, mode) dataloader = data.DataLoader(dataset, batch_size, shuffle=(mode == 'train'), num_workers=batch_size) return dataloader if __name__ == '__main__': root_path = 'data/new_data' max_seq_len = 51 dim_seq = 10 batch_size = 1 char_num = 52 loader = get_loader(root_path, char_num, max_seq_len, dim_seq, batch_size, 'train') fout = open('train_id_record_old.txt','w') for idx, batch in enumerate(loader): binary_fp = batch['font_id'].numpy()[0][0] fout.write("%05d"%int(binary_fp) + '\n')