File size: 14,999 Bytes
1daafb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np

from ..utils import is_tuple_of
from .colorspace import bgr2gray, gray2bgr


def imnormalize(img, mean, std, to_rgb=True):
    """Normalize an image with mean and std.

    Args:
        img (ndarray): Image to be normalized.
        mean (ndarray): The mean to be used for normalize.
        std (ndarray): The std to be used for normalize.
        to_rgb (bool): Whether to convert to rgb.

    Returns:
        ndarray: The normalized image.
    """
    img = img.copy().astype(np.float32)
    return imnormalize_(img, mean, std, to_rgb)


def imnormalize_(img, mean, std, to_rgb=True):
    """Inplace normalize an image with mean and std.

    Args:
        img (ndarray): Image to be normalized.
        mean (ndarray): The mean to be used for normalize.
        std (ndarray): The std to be used for normalize.
        to_rgb (bool): Whether to convert to rgb.

    Returns:
        ndarray: The normalized image.
    """
    # cv2 inplace normalization does not accept uint8
    assert img.dtype != np.uint8
    mean = np.float64(mean.reshape(1, -1))
    stdinv = 1 / np.float64(std.reshape(1, -1))
    if to_rgb:
        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)  # inplace
    cv2.subtract(img, mean, img)  # inplace
    cv2.multiply(img, stdinv, img)  # inplace
    return img


def imdenormalize(img, mean, std, to_bgr=True):
    assert img.dtype != np.uint8
    mean = mean.reshape(1, -1).astype(np.float64)
    std = std.reshape(1, -1).astype(np.float64)
    img = cv2.multiply(img, std)  # make a copy
    cv2.add(img, mean, img)  # inplace
    if to_bgr:
        cv2.cvtColor(img, cv2.COLOR_RGB2BGR, img)  # inplace
    return img


def iminvert(img):
    """Invert (negate) an image.

    Args:
        img (ndarray): Image to be inverted.

    Returns:
        ndarray: The inverted image.
    """
    return np.full_like(img, 255) - img


def solarize(img, thr=128):
    """Solarize an image (invert all pixel values above a threshold)

    Args:
        img (ndarray): Image to be solarized.
        thr (int): Threshold for solarizing (0 - 255).

    Returns:
        ndarray: The solarized image.
    """
    img = np.where(img < thr, img, 255 - img)
    return img


def posterize(img, bits):
    """Posterize an image (reduce the number of bits for each color channel)

    Args:
        img (ndarray): Image to be posterized.
        bits (int): Number of bits (1 to 8) to use for posterizing.

    Returns:
        ndarray: The posterized image.
    """
    shift = 8 - bits
    img = np.left_shift(np.right_shift(img, shift), shift)
    return img


def adjust_color(img, alpha=1, beta=None, gamma=0):
    r"""It blends the source image and its gray image:

    .. math::
        output = img * alpha + gray\_img * beta + gamma

    Args:
        img (ndarray): The input source image.
        alpha (int | float): Weight for the source image. Default 1.
        beta (int | float): Weight for the converted gray image.
            If None, it's assigned the value (1 - `alpha`).
        gamma (int | float): Scalar added to each sum.
            Same as :func:`cv2.addWeighted`. Default 0.

    Returns:
        ndarray: Colored image which has the same size and dtype as input.
    """
    gray_img = bgr2gray(img)
    gray_img = np.tile(gray_img[..., None], [1, 1, 3])
    if beta is None:
        beta = 1 - alpha
    colored_img = cv2.addWeighted(img, alpha, gray_img, beta, gamma)
    if not colored_img.dtype == np.uint8:
        # Note when the dtype of `img` is not the default `np.uint8`
        # (e.g. np.float32), the value in `colored_img` got from cv2
        # is not guaranteed to be in range [0, 255], so here clip
        # is needed.
        colored_img = np.clip(colored_img, 0, 255)
    return colored_img


def imequalize(img):
    """Equalize the image histogram.

    This function applies a non-linear mapping to the input image,
    in order to create a uniform distribution of grayscale values
    in the output image.

    Args:
        img (ndarray): Image to be equalized.

    Returns:
        ndarray: The equalized image.
    """

    def _scale_channel(im, c):
        """Scale the data in the corresponding channel."""
        im = im[:, :, c]
        # Compute the histogram of the image channel.
        histo = np.histogram(im, 256, (0, 255))[0]
        # For computing the step, filter out the nonzeros.
        nonzero_histo = histo[histo > 0]
        step = (np.sum(nonzero_histo) - nonzero_histo[-1]) // 255
        if not step:
            lut = np.array(range(256))
        else:
            # Compute the cumulative sum, shifted by step // 2
            # and then normalized by step.
            lut = (np.cumsum(histo) + (step // 2)) // step
            # Shift lut, prepending with 0.
            lut = np.concatenate([[0], lut[:-1]], 0)
            # handle potential integer overflow
            lut[lut > 255] = 255
        # If step is zero, return the original image.
        # Otherwise, index from lut.
        return np.where(np.equal(step, 0), im, lut[im])

    # Scales each channel independently and then stacks
    # the result.
    s1 = _scale_channel(img, 0)
    s2 = _scale_channel(img, 1)
    s3 = _scale_channel(img, 2)
    equalized_img = np.stack([s1, s2, s3], axis=-1)
    return equalized_img.astype(img.dtype)


def adjust_brightness(img, factor=1.):
    """Adjust image brightness.

    This function controls the brightness of an image. An
    enhancement factor of 0.0 gives a black image.
    A factor of 1.0 gives the original image. This function
    blends the source image and the degenerated black image:

    .. math::
        output = img * factor + degenerated * (1 - factor)

    Args:
        img (ndarray): Image to be brightened.
        factor (float): A value controls the enhancement.
            Factor 1.0 returns the original image, lower
            factors mean less color (brightness, contrast,
            etc), and higher values more. Default 1.

    Returns:
        ndarray: The brightened image.
    """
    degenerated = np.zeros_like(img)
    # Note manually convert the dtype to np.float32, to
    # achieve as close results as PIL.ImageEnhance.Brightness.
    # Set beta=1-factor, and gamma=0
    brightened_img = cv2.addWeighted(
        img.astype(np.float32), factor, degenerated.astype(np.float32),
        1 - factor, 0)
    brightened_img = np.clip(brightened_img, 0, 255)
    return brightened_img.astype(img.dtype)


def adjust_contrast(img, factor=1.):
    """Adjust image contrast.

    This function controls the contrast of an image. An
    enhancement factor of 0.0 gives a solid grey
    image. A factor of 1.0 gives the original image. It
    blends the source image and the degenerated mean image:

    .. math::
        output = img * factor + degenerated * (1 - factor)

    Args:
        img (ndarray): Image to be contrasted. BGR order.
        factor (float): Same as :func:`mmcv.adjust_brightness`.

    Returns:
        ndarray: The contrasted image.
    """
    gray_img = bgr2gray(img)
    hist = np.histogram(gray_img, 256, (0, 255))[0]
    mean = round(np.sum(gray_img) / np.sum(hist))
    degenerated = (np.ones_like(img[..., 0]) * mean).astype(img.dtype)
    degenerated = gray2bgr(degenerated)
    contrasted_img = cv2.addWeighted(
        img.astype(np.float32), factor, degenerated.astype(np.float32),
        1 - factor, 0)
    contrasted_img = np.clip(contrasted_img, 0, 255)
    return contrasted_img.astype(img.dtype)


def auto_contrast(img, cutoff=0):
    """Auto adjust image contrast.

    This function maximize (normalize) image contrast by first removing cutoff
    percent of the lightest and darkest pixels from the histogram and remapping
    the image so that the darkest pixel becomes black (0), and the lightest
    becomes white (255).

    Args:
        img (ndarray): Image to be contrasted. BGR order.
        cutoff (int | float | tuple): The cutoff percent of the lightest and
            darkest pixels to be removed. If given as tuple, it shall be
            (low, high). Otherwise, the single value will be used for both.
            Defaults to 0.

    Returns:
        ndarray: The contrasted image.
    """

    def _auto_contrast_channel(im, c, cutoff):
        im = im[:, :, c]
        # Compute the histogram of the image channel.
        histo = np.histogram(im, 256, (0, 255))[0]
        # Remove cut-off percent pixels from histo
        histo_sum = np.cumsum(histo)
        cut_low = histo_sum[-1] * cutoff[0] // 100
        cut_high = histo_sum[-1] - histo_sum[-1] * cutoff[1] // 100
        histo_sum = np.clip(histo_sum, cut_low, cut_high) - cut_low
        histo = np.concatenate([[histo_sum[0]], np.diff(histo_sum)], 0)

        # Compute mapping
        low, high = np.nonzero(histo)[0][0], np.nonzero(histo)[0][-1]
        # If all the values have been cut off, return the origin img
        if low >= high:
            return im
        scale = 255.0 / (high - low)
        offset = -low * scale
        lut = np.array(range(256))
        lut = lut * scale + offset
        lut = np.clip(lut, 0, 255)
        return lut[im]

    if isinstance(cutoff, (int, float)):
        cutoff = (cutoff, cutoff)
    else:
        assert isinstance(cutoff, tuple), 'cutoff must be of type int, ' \
            f'float or tuple, but got {type(cutoff)} instead.'
    # Auto adjusts contrast for each channel independently and then stacks
    # the result.
    s1 = _auto_contrast_channel(img, 0, cutoff)
    s2 = _auto_contrast_channel(img, 1, cutoff)
    s3 = _auto_contrast_channel(img, 2, cutoff)
    contrasted_img = np.stack([s1, s2, s3], axis=-1)
    return contrasted_img.astype(img.dtype)


def adjust_sharpness(img, factor=1., kernel=None):
    """Adjust image sharpness.

    This function controls the sharpness of an image. An
    enhancement factor of 0.0 gives a blurred image. A
    factor of 1.0 gives the original image. And a factor
    of 2.0 gives a sharpened image. It blends the source
    image and the degenerated mean image:

    .. math::
        output = img * factor + degenerated * (1 - factor)

    Args:
        img (ndarray): Image to be sharpened. BGR order.
        factor (float): Same as :func:`mmcv.adjust_brightness`.
        kernel (np.ndarray, optional): Filter kernel to be applied on the img
            to obtain the degenerated img. Defaults to None.

    Note:
        No value sanity check is enforced on the kernel set by users. So with
        an inappropriate kernel, the ``adjust_sharpness`` may fail to perform
        the function its name indicates but end up performing whatever
        transform determined by the kernel.

    Returns:
        ndarray: The sharpened image.
    """

    if kernel is None:
        # adopted from PIL.ImageFilter.SMOOTH
        kernel = np.array([[1., 1., 1.], [1., 5., 1.], [1., 1., 1.]]) / 13
    assert isinstance(kernel, np.ndarray), \
        f'kernel must be of type np.ndarray, but got {type(kernel)} instead.'
    assert kernel.ndim == 2, \
        f'kernel must have a dimension of 2, but got {kernel.ndim} instead.'

    degenerated = cv2.filter2D(img, -1, kernel)
    sharpened_img = cv2.addWeighted(
        img.astype(np.float32), factor, degenerated.astype(np.float32),
        1 - factor, 0)
    sharpened_img = np.clip(sharpened_img, 0, 255)
    return sharpened_img.astype(img.dtype)


def adjust_lighting(img, eigval, eigvec, alphastd=0.1, to_rgb=True):
    """AlexNet-style PCA jitter.

    This data augmentation is proposed in `ImageNet Classification with Deep
    Convolutional Neural Networks
    <https://dl.acm.org/doi/pdf/10.1145/3065386>`_.

    Args:
        img (ndarray): Image to be adjusted lighting. BGR order.
        eigval (ndarray): the eigenvalue of the convariance matrix of pixel
            values, respectively.
        eigvec (ndarray): the eigenvector of the convariance matrix of pixel
            values, respectively.
        alphastd (float): The standard deviation for distribution of alpha.
            Defaults to 0.1
        to_rgb (bool): Whether to convert img to rgb.

    Returns:
        ndarray: The adjusted image.
    """
    assert isinstance(eigval, np.ndarray) and isinstance(eigvec, np.ndarray), \
        f'eigval and eigvec should both be of type np.ndarray, got ' \
        f'{type(eigval)} and {type(eigvec)} instead.'

    assert eigval.ndim == 1 and eigvec.ndim == 2
    assert eigvec.shape == (3, eigval.shape[0])
    n_eigval = eigval.shape[0]
    assert isinstance(alphastd, float), 'alphastd should be of type float, ' \
        f'got {type(alphastd)} instead.'

    img = img.copy().astype(np.float32)
    if to_rgb:
        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)  # inplace

    alpha = np.random.normal(0, alphastd, n_eigval)
    alter = eigvec \
        * np.broadcast_to(alpha.reshape(1, n_eigval), (3, n_eigval)) \
        * np.broadcast_to(eigval.reshape(1, n_eigval), (3, n_eigval))
    alter = np.broadcast_to(alter.sum(axis=1).reshape(1, 1, 3), img.shape)
    img_adjusted = img + alter
    return img_adjusted


def lut_transform(img, lut_table):
    """Transform array by look-up table.

    The function lut_transform fills the output array with values from the
    look-up table. Indices of the entries are taken from the input array.

    Args:
        img (ndarray): Image to be transformed.
        lut_table (ndarray): look-up table of 256 elements; in case of
            multi-channel input array, the table should either have a single
            channel (in this case the same table is used for all channels) or
            the same number of channels as in the input array.

    Returns:
        ndarray: The transformed image.
    """
    assert isinstance(img, np.ndarray)
    assert 0 <= np.min(img) and np.max(img) <= 255
    assert isinstance(lut_table, np.ndarray)
    assert lut_table.shape == (256, )

    return cv2.LUT(np.array(img, dtype=np.uint8), lut_table)


def clahe(img, clip_limit=40.0, tile_grid_size=(8, 8)):
    """Use CLAHE method to process the image.

    See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J].
    Graphics Gems, 1994:474-485.` for more information.

    Args:
        img (ndarray): Image to be processed.
        clip_limit (float): Threshold for contrast limiting. Default: 40.0.
        tile_grid_size (tuple[int]): Size of grid for histogram equalization.
            Input image will be divided into equally sized rectangular tiles.
            It defines the number of tiles in row and column. Default: (8, 8).

    Returns:
        ndarray: The processed image.
    """
    assert isinstance(img, np.ndarray)
    assert img.ndim == 2
    assert isinstance(clip_limit, (float, int))
    assert is_tuple_of(tile_grid_size, int)
    assert len(tile_grid_size) == 2

    clahe = cv2.createCLAHE(clip_limit, tile_grid_size)
    return clahe.apply(np.array(img, dtype=np.uint8))