File size: 9,873 Bytes
1daafb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.nn.modules.module import Module

from ..cnn import UPSAMPLE_LAYERS, normal_init, xavier_init
from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', [
    'carafe_naive_forward', 'carafe_naive_backward', 'carafe_forward',
    'carafe_backward'
])


class CARAFENaiveFunction(Function):

    @staticmethod
    def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
        return g.op(
            'mmcv::MMCVCARAFENaive',
            features,
            masks,
            kernel_size_i=kernel_size,
            group_size_i=group_size,
            scale_factor_f=scale_factor)

    @staticmethod
    def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
        assert scale_factor >= 1
        assert masks.size(1) == kernel_size * kernel_size * group_size
        assert masks.size(-1) == features.size(-1) * scale_factor
        assert masks.size(-2) == features.size(-2) * scale_factor
        assert features.size(1) % group_size == 0
        assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
        ctx.kernel_size = kernel_size
        ctx.group_size = group_size
        ctx.scale_factor = scale_factor
        ctx.feature_size = features.size()
        ctx.mask_size = masks.size()

        n, c, h, w = features.size()
        output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
        ext_module.carafe_naive_forward(
            features,
            masks,
            output,
            kernel_size=kernel_size,
            group_size=group_size,
            scale_factor=scale_factor)

        if features.requires_grad or masks.requires_grad:
            ctx.save_for_backward(features, masks)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        assert grad_output.is_cuda

        features, masks = ctx.saved_tensors
        kernel_size = ctx.kernel_size
        group_size = ctx.group_size
        scale_factor = ctx.scale_factor

        grad_input = torch.zeros_like(features)
        grad_masks = torch.zeros_like(masks)
        ext_module.carafe_naive_backward(
            grad_output.contiguous(),
            features,
            masks,
            grad_input,
            grad_masks,
            kernel_size=kernel_size,
            group_size=group_size,
            scale_factor=scale_factor)

        return grad_input, grad_masks, None, None, None


carafe_naive = CARAFENaiveFunction.apply


class CARAFENaive(Module):

    def __init__(self, kernel_size, group_size, scale_factor):
        super(CARAFENaive, self).__init__()

        assert isinstance(kernel_size, int) and isinstance(
            group_size, int) and isinstance(scale_factor, int)
        self.kernel_size = kernel_size
        self.group_size = group_size
        self.scale_factor = scale_factor

    def forward(self, features, masks):
        return carafe_naive(features, masks, self.kernel_size, self.group_size,
                            self.scale_factor)


class CARAFEFunction(Function):

    @staticmethod
    def symbolic(g, features, masks, kernel_size, group_size, scale_factor):
        return g.op(
            'mmcv::MMCVCARAFE',
            features,
            masks,
            kernel_size_i=kernel_size,
            group_size_i=group_size,
            scale_factor_f=scale_factor)

    @staticmethod
    def forward(ctx, features, masks, kernel_size, group_size, scale_factor):
        assert scale_factor >= 1
        assert masks.size(1) == kernel_size * kernel_size * group_size
        assert masks.size(-1) == features.size(-1) * scale_factor
        assert masks.size(-2) == features.size(-2) * scale_factor
        assert features.size(1) % group_size == 0
        assert (kernel_size - 1) % 2 == 0 and kernel_size >= 1
        ctx.kernel_size = kernel_size
        ctx.group_size = group_size
        ctx.scale_factor = scale_factor
        ctx.feature_size = features.size()
        ctx.mask_size = masks.size()

        n, c, h, w = features.size()
        output = features.new_zeros((n, c, h * scale_factor, w * scale_factor))
        routput = features.new_zeros(output.size(), requires_grad=False)
        rfeatures = features.new_zeros(features.size(), requires_grad=False)
        rmasks = masks.new_zeros(masks.size(), requires_grad=False)
        ext_module.carafe_forward(
            features,
            masks,
            rfeatures,
            routput,
            rmasks,
            output,
            kernel_size=kernel_size,
            group_size=group_size,
            scale_factor=scale_factor)

        if features.requires_grad or masks.requires_grad:
            ctx.save_for_backward(features, masks, rfeatures)
        return output

    @staticmethod
    def backward(ctx, grad_output):
        assert grad_output.is_cuda

        features, masks, rfeatures = ctx.saved_tensors
        kernel_size = ctx.kernel_size
        group_size = ctx.group_size
        scale_factor = ctx.scale_factor

        rgrad_output = torch.zeros_like(grad_output, requires_grad=False)
        rgrad_input_hs = torch.zeros_like(grad_output, requires_grad=False)
        rgrad_input = torch.zeros_like(features, requires_grad=False)
        rgrad_masks = torch.zeros_like(masks, requires_grad=False)
        grad_input = torch.zeros_like(features, requires_grad=False)
        grad_masks = torch.zeros_like(masks, requires_grad=False)
        ext_module.carafe_backward(
            grad_output.contiguous(),
            rfeatures,
            masks,
            rgrad_output,
            rgrad_input_hs,
            rgrad_input,
            rgrad_masks,
            grad_input,
            grad_masks,
            kernel_size=kernel_size,
            group_size=group_size,
            scale_factor=scale_factor)
        return grad_input, grad_masks, None, None, None


carafe = CARAFEFunction.apply


class CARAFE(Module):
    """ CARAFE: Content-Aware ReAssembly of FEatures

    Please refer to https://arxiv.org/abs/1905.02188 for more details.

    Args:
        kernel_size (int): reassemble kernel size
        group_size (int): reassemble group size
        scale_factor (int): upsample ratio

    Returns:
        upsampled feature map
    """

    def __init__(self, kernel_size, group_size, scale_factor):
        super(CARAFE, self).__init__()

        assert isinstance(kernel_size, int) and isinstance(
            group_size, int) and isinstance(scale_factor, int)
        self.kernel_size = kernel_size
        self.group_size = group_size
        self.scale_factor = scale_factor

    def forward(self, features, masks):
        return carafe(features, masks, self.kernel_size, self.group_size,
                      self.scale_factor)


@UPSAMPLE_LAYERS.register_module(name='carafe')
class CARAFEPack(nn.Module):
    """A unified package of CARAFE upsampler that contains: 1) channel
    compressor 2) content encoder 3) CARAFE op.

    Official implementation of ICCV 2019 paper
    CARAFE: Content-Aware ReAssembly of FEatures
    Please refer to https://arxiv.org/abs/1905.02188 for more details.

    Args:
        channels (int): input feature channels
        scale_factor (int): upsample ratio
        up_kernel (int): kernel size of CARAFE op
        up_group (int): group size of CARAFE op
        encoder_kernel (int): kernel size of content encoder
        encoder_dilation (int): dilation of content encoder
        compressed_channels (int): output channels of channels compressor

    Returns:
        upsampled feature map
    """

    def __init__(self,
                 channels,
                 scale_factor,
                 up_kernel=5,
                 up_group=1,
                 encoder_kernel=3,
                 encoder_dilation=1,
                 compressed_channels=64):
        super(CARAFEPack, self).__init__()
        self.channels = channels
        self.scale_factor = scale_factor
        self.up_kernel = up_kernel
        self.up_group = up_group
        self.encoder_kernel = encoder_kernel
        self.encoder_dilation = encoder_dilation
        self.compressed_channels = compressed_channels
        self.channel_compressor = nn.Conv2d(channels, self.compressed_channels,
                                            1)
        self.content_encoder = nn.Conv2d(
            self.compressed_channels,
            self.up_kernel * self.up_kernel * self.up_group *
            self.scale_factor * self.scale_factor,
            self.encoder_kernel,
            padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
            dilation=self.encoder_dilation,
            groups=1)
        self.init_weights()

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')
        normal_init(self.content_encoder, std=0.001)

    def kernel_normalizer(self, mask):
        mask = F.pixel_shuffle(mask, self.scale_factor)
        n, mask_c, h, w = mask.size()
        # use float division explicitly,
        # to void inconsistency while exporting to onnx
        mask_channel = int(mask_c / float(self.up_kernel**2))
        mask = mask.view(n, mask_channel, -1, h, w)

        mask = F.softmax(mask, dim=2, dtype=mask.dtype)
        mask = mask.view(n, mask_c, h, w).contiguous()

        return mask

    def feature_reassemble(self, x, mask):
        x = carafe(x, mask, self.up_kernel, self.up_group, self.scale_factor)
        return x

    def forward(self, x):
        compressed_x = self.channel_compressor(x)
        mask = self.content_encoder(compressed_x)
        mask = self.kernel_normalizer(mask)

        x = self.feature_reassemble(x, mask)
        return x