Spaces:
Runtime error
Runtime error
LanHarmony
commited on
Commit
·
2ce295b
1
Parent(s):
b0cbfee
introduce control net from diffusers
Browse files- visual_foundation_models.py +760 -331
visual_foundation_models.py
CHANGED
@@ -6,8 +6,10 @@ from diffusers import StableDiffusionInpaintPipeline
|
|
6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
7 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
8 |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
|
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
10 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
|
|
11 |
from ldm.util import instantiate_from_config
|
12 |
from ControlNet.cldm.model import create_model, load_state_dict
|
13 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
@@ -26,6 +28,46 @@ from pytorch_lightning import seed_everything
|
|
26 |
import cv2
|
27 |
import random
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def HWC3(x):
|
30 |
assert x.dtype == np.uint8
|
31 |
if x.ndim == 2:
|
@@ -355,83 +397,82 @@ class line2image_new:
|
|
355 |
return updated_image_path
|
356 |
|
357 |
|
358 |
-
class image2line:
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
class line2image:
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
|
431 |
-
class
|
432 |
def __init__(self):
|
433 |
print("Direct detect soft HED boundary...")
|
434 |
-
self.detector = HEDdetector()
|
435 |
self.resolution = 512
|
436 |
|
437 |
def inference(self, inputs):
|
@@ -439,29 +480,30 @@ class image2hed:
|
|
439 |
image = Image.open(inputs)
|
440 |
image = np.array(image)
|
441 |
image = HWC3(image)
|
442 |
-
|
|
|
|
|
443 |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
444 |
-
|
445 |
-
image.save(updated_image_path)
|
446 |
return updated_image_path
|
447 |
|
448 |
-
|
449 |
-
class hed2image:
|
450 |
def __init__(self, device):
|
451 |
print("Initialize the hed2image model...")
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
self.
|
457 |
-
|
|
|
|
|
|
|
|
|
458 |
self.image_resolution = 512
|
459 |
-
self.
|
460 |
-
self.save_memory = False
|
461 |
-
self.strength = 1.0
|
462 |
-
self.guess_mode = False
|
463 |
-
self.scale = 9.0
|
464 |
self.seed = -1
|
|
|
465 |
self.a_prompt = 'best quality, extremely detailed'
|
466 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
467 |
|
@@ -470,35 +512,91 @@ class hed2image:
|
|
470 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
471 |
image = Image.open(image_path)
|
472 |
image = np.array(image)
|
473 |
-
prompt = instruct_text
|
474 |
img = resize_image(HWC3(image), self.image_resolution)
|
475 |
-
|
476 |
-
|
477 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
478 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
479 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
480 |
self.seed = random.randint(0, 65535)
|
481 |
seed_everything(self.seed)
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
489 |
-
if self.save_memory:
|
490 |
-
self.model.low_vram_shift(is_diffusing=False)
|
491 |
-
x_samples = self.model.decode_first_stage(samples)
|
492 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
493 |
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
494 |
-
|
495 |
-
real_image.save(updated_image_path)
|
496 |
return updated_image_path
|
497 |
|
498 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
499 |
def __init__(self):
|
500 |
print("Direct detect scribble.")
|
501 |
-
self.detector = HEDdetector()
|
502 |
self.resolution = 512
|
503 |
|
504 |
def inference(self, inputs):
|
@@ -506,76 +604,136 @@ class image2scribble:
|
|
506 |
image = Image.open(inputs)
|
507 |
image = np.array(image)
|
508 |
image = HWC3(image)
|
509 |
-
detected_map = self.detector(resize_image(image, self.resolution))
|
510 |
-
detected_map = HWC3(detected_map)
|
511 |
image = resize_image(image, self.resolution)
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
detected_map[detected_map < 255] = 0
|
518 |
-
detected_map = 255 - detected_map
|
519 |
updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
520 |
-
|
521 |
-
image.save(updated_image_path)
|
522 |
return updated_image_path
|
523 |
|
524 |
-
class
|
525 |
def __init__(self, device):
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
self.
|
531 |
-
|
532 |
-
|
|
|
|
|
|
|
533 |
self.image_resolution = 512
|
534 |
-
self.
|
535 |
-
self.save_memory = False
|
536 |
-
self.strength = 1.0
|
537 |
-
self.guess_mode = False
|
538 |
-
self.scale = 9.0
|
539 |
self.seed = -1
|
|
|
540 |
self.a_prompt = 'best quality, extremely detailed'
|
541 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
542 |
|
543 |
def inference(self, inputs):
|
544 |
print("===>Starting scribble2image Inference")
|
545 |
-
print(f'sketch device {self.device}')
|
546 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
547 |
image = Image.open(image_path)
|
548 |
image = np.array(image)
|
549 |
-
prompt = instruct_text
|
550 |
image = 255 - image
|
551 |
img = resize_image(HWC3(image), self.image_resolution)
|
552 |
-
|
553 |
-
|
554 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
555 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
556 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
557 |
self.seed = random.randint(0, 65535)
|
558 |
seed_everything(self.seed)
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
566 |
-
if self.save_memory:
|
567 |
-
self.model.low_vram_shift(is_diffusing=False)
|
568 |
-
x_samples = self.model.decode_first_stage(samples)
|
569 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
570 |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
571 |
-
|
572 |
-
real_image.save(updated_image_path)
|
573 |
return updated_image_path
|
574 |
|
575 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
def __init__(self):
|
577 |
-
|
578 |
-
self.detector = OpenposeDetector()
|
579 |
self.resolution = 512
|
580 |
|
581 |
def inference(self, inputs):
|
@@ -583,32 +741,30 @@ class image2pose:
|
|
583 |
image = Image.open(inputs)
|
584 |
image = np.array(image)
|
585 |
image = HWC3(image)
|
586 |
-
detected_map, _ = self.detector(resize_image(image, self.resolution))
|
587 |
-
detected_map = HWC3(detected_map)
|
588 |
image = resize_image(image, self.resolution)
|
589 |
-
|
590 |
-
|
|
|
591 |
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
592 |
-
|
593 |
-
image.save(updated_image_path)
|
594 |
return updated_image_path
|
595 |
|
596 |
-
class
|
597 |
def __init__(self, device):
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
self.
|
603 |
-
|
604 |
-
|
|
|
|
|
|
|
605 |
self.image_resolution = 512
|
606 |
-
self.
|
607 |
-
self.save_memory = False
|
608 |
-
self.strength = 1.0
|
609 |
-
self.guess_mode = False
|
610 |
-
self.scale = 9.0
|
611 |
self.seed = -1
|
|
|
612 |
self.a_prompt = 'best quality, extremely detailed'
|
613 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
614 |
|
@@ -617,68 +773,141 @@ class pose2image:
|
|
617 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
618 |
image = Image.open(image_path)
|
619 |
image = np.array(image)
|
620 |
-
prompt = instruct_text
|
621 |
img = resize_image(HWC3(image), self.image_resolution)
|
622 |
-
|
623 |
-
|
624 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
625 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
626 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
627 |
self.seed = random.randint(0, 65535)
|
628 |
seed_everything(self.seed)
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
636 |
-
if self.save_memory:
|
637 |
-
self.model.low_vram_shift(is_diffusing=False)
|
638 |
-
x_samples = self.model.decode_first_stage(samples)
|
639 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
640 |
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
641 |
-
|
642 |
-
real_image.save(updated_image_path)
|
643 |
return updated_image_path
|
644 |
|
645 |
-
class image2seg:
|
646 |
-
def __init__(self):
|
647 |
-
print("Direct segmentations.")
|
648 |
-
self.detector = UniformerDetector()
|
649 |
-
self.resolution = 512
|
650 |
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
661 |
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
662 |
-
|
663 |
-
image.save(updated_image_path)
|
664 |
return updated_image_path
|
665 |
|
666 |
-
class
|
667 |
def __init__(self, device):
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
self.
|
673 |
-
|
674 |
-
|
|
|
|
|
|
|
675 |
self.image_resolution = 512
|
676 |
-
self.
|
677 |
-
self.save_memory = False
|
678 |
-
self.strength = 1.0
|
679 |
-
self.guess_mode = False
|
680 |
-
self.scale = 9.0
|
681 |
self.seed = -1
|
|
|
682 |
self.a_prompt = 'best quality, extremely detailed'
|
683 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
684 |
|
@@ -687,68 +916,130 @@ class seg2image:
|
|
687 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
688 |
image = Image.open(image_path)
|
689 |
image = np.array(image)
|
690 |
-
prompt = instruct_text
|
691 |
img = resize_image(HWC3(image), self.image_resolution)
|
692 |
-
|
693 |
-
|
694 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
695 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
696 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
697 |
self.seed = random.randint(0, 65535)
|
698 |
seed_everything(self.seed)
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
706 |
-
if self.save_memory:
|
707 |
-
self.model.low_vram_shift(is_diffusing=False)
|
708 |
-
x_samples = self.model.decode_first_stage(samples)
|
709 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
710 |
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
711 |
-
|
712 |
-
real_image.save(updated_image_path)
|
713 |
return updated_image_path
|
714 |
|
715 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
716 |
def __init__(self):
|
717 |
-
print("
|
718 |
-
self.
|
719 |
self.resolution = 512
|
720 |
|
721 |
def inference(self, inputs):
|
722 |
-
print("===>Starting image2depth Inference")
|
723 |
image = Image.open(inputs)
|
724 |
image = np.array(image)
|
725 |
image = HWC3(image)
|
726 |
-
detected_map, _ = self.detector(resize_image(image, self.resolution))
|
727 |
-
detected_map = HWC3(detected_map)
|
728 |
image = resize_image(image, self.resolution)
|
729 |
-
|
730 |
-
|
|
|
|
|
|
|
|
|
731 |
updated_image_path = get_new_image_name(inputs, func_name="depth")
|
732 |
-
|
733 |
-
image.save(updated_image_path)
|
734 |
return updated_image_path
|
735 |
|
736 |
-
class
|
737 |
def __init__(self, device):
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
self.
|
743 |
-
|
744 |
-
|
|
|
|
|
|
|
745 |
self.image_resolution = 512
|
746 |
-
self.
|
747 |
-
self.save_memory = False
|
748 |
-
self.strength = 1.0
|
749 |
-
self.guess_mode = False
|
750 |
-
self.scale = 9.0
|
751 |
self.seed = -1
|
|
|
752 |
self.a_prompt = 'best quality, extremely detailed'
|
753 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
754 |
|
@@ -757,69 +1048,146 @@ class depth2image:
|
|
757 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
758 |
image = Image.open(image_path)
|
759 |
image = np.array(image)
|
760 |
-
prompt = instruct_text
|
761 |
img = resize_image(HWC3(image), self.image_resolution)
|
762 |
-
|
763 |
-
|
764 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
765 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
766 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
767 |
self.seed = random.randint(0, 65535)
|
768 |
seed_everything(self.seed)
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
776 |
-
if self.save_memory:
|
777 |
-
self.model.low_vram_shift(is_diffusing=False)
|
778 |
-
x_samples = self.model.decode_first_stage(samples)
|
779 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
780 |
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
781 |
-
|
782 |
-
real_image.save(updated_image_path)
|
783 |
return updated_image_path
|
784 |
|
785 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
786 |
def __init__(self):
|
787 |
-
print("
|
788 |
-
self.
|
789 |
self.resolution = 512
|
790 |
-
self.
|
791 |
|
792 |
def inference(self, inputs):
|
793 |
-
print("===>Starting image2 normal Inference")
|
794 |
image = Image.open(inputs)
|
795 |
image = np.array(image)
|
796 |
image = HWC3(image)
|
797 |
-
_, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
|
798 |
-
detected_map = HWC3(detected_map)
|
799 |
image = resize_image(image, self.resolution)
|
800 |
-
|
801 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
802 |
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
803 |
-
image = Image.fromarray(detected_map)
|
804 |
image.save(updated_image_path)
|
805 |
return updated_image_path
|
806 |
|
807 |
-
class
|
808 |
def __init__(self, device):
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
self.
|
814 |
-
|
815 |
-
|
|
|
|
|
|
|
816 |
self.image_resolution = 512
|
817 |
-
self.
|
818 |
-
self.save_memory = False
|
819 |
-
self.strength = 1.0
|
820 |
-
self.guess_mode = False
|
821 |
-
self.scale = 9.0
|
822 |
self.seed = -1
|
|
|
823 |
self.a_prompt = 'best quality, extremely detailed'
|
824 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
825 |
|
@@ -828,32 +1196,93 @@ class normal2image:
|
|
828 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
829 |
image = Image.open(image_path)
|
830 |
image = np.array(image)
|
831 |
-
|
832 |
-
img =
|
833 |
-
|
834 |
-
H, W, C = img.shape
|
835 |
-
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
836 |
-
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
837 |
-
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
838 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
839 |
self.seed = random.randint(0, 65535)
|
840 |
seed_everything(self.seed)
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
848 |
-
if self.save_memory:
|
849 |
-
self.model.low_vram_shift(is_diffusing=False)
|
850 |
-
x_samples = self.model.decode_first_stage(samples)
|
851 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
852 |
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
853 |
-
|
854 |
-
real_image.save(updated_image_path)
|
855 |
return updated_image_path
|
856 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
857 |
class BLIPVQA:
|
858 |
def __init__(self, device):
|
859 |
print("Initializing BLIP VQA to %s" % device)
|
|
|
6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
7 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
8 |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
9 |
+
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
11 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
12 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
13 |
from ldm.util import instantiate_from_config
|
14 |
from ControlNet.cldm.model import create_model, load_state_dict
|
15 |
from ControlNet.cldm.ddim_hacked import DDIMSampler
|
|
|
28 |
import cv2
|
29 |
import random
|
30 |
|
31 |
+
def ade_palette():
|
32 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
33 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
34 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
35 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
36 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
37 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
38 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
39 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
40 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
41 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
42 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
43 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
44 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
45 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
46 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
47 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
48 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
49 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
50 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
51 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
52 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
53 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
54 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
55 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
56 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
57 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
58 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
59 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
60 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
61 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
62 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
63 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
64 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
65 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
66 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
67 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
68 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
69 |
+
[102, 255, 0], [92, 0, 255]]
|
70 |
+
|
71 |
def HWC3(x):
|
72 |
assert x.dtype == np.uint8
|
73 |
if x.ndim == 2:
|
|
|
397 |
return updated_image_path
|
398 |
|
399 |
|
400 |
+
# class image2line:
|
401 |
+
# def __init__(self):
|
402 |
+
# print("Direct detect straight line...")
|
403 |
+
# self.detector = MLSDdetector()
|
404 |
+
# self.value_thresh = 0.1
|
405 |
+
# self.dis_thresh = 0.1
|
406 |
+
# self.resolution = 512
|
407 |
+
#
|
408 |
+
# def inference(self, inputs):
|
409 |
+
# print("===>Starting image2hough Inference")
|
410 |
+
# image = Image.open(inputs)
|
411 |
+
# image = np.array(image)
|
412 |
+
# image = HWC3(image)
|
413 |
+
# hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
|
414 |
+
# updated_image_path = get_new_image_name(inputs, func_name="line-of")
|
415 |
+
# hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
416 |
+
# image = Image.fromarray(hough)
|
417 |
+
# image.save(updated_image_path)
|
418 |
+
# return updated_image_path
|
419 |
+
#
|
420 |
+
#
|
421 |
+
# class line2image:
|
422 |
+
# def __init__(self, device):
|
423 |
+
# print("Initialize the line2image model...")
|
424 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
425 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
|
426 |
+
# self.model = model.to(device)
|
427 |
+
# self.device = device
|
428 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
429 |
+
# self.ddim_steps = 20
|
430 |
+
# self.image_resolution = 512
|
431 |
+
# self.num_samples = 1
|
432 |
+
# self.save_memory = False
|
433 |
+
# self.strength = 1.0
|
434 |
+
# self.guess_mode = False
|
435 |
+
# self.scale = 9.0
|
436 |
+
# self.seed = -1
|
437 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
438 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
439 |
+
#
|
440 |
+
# def inference(self, inputs):
|
441 |
+
# print("===>Starting line2image Inference")
|
442 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
443 |
+
# image = Image.open(image_path)
|
444 |
+
# image = np.array(image)
|
445 |
+
# image = 255 - image
|
446 |
+
# prompt = instruct_text
|
447 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
448 |
+
# H, W, C = img.shape
|
449 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
450 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
451 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
452 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
453 |
+
# self.seed = random.randint(0, 65535)
|
454 |
+
# seed_everything(self.seed)
|
455 |
+
# if self.save_memory:
|
456 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
457 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
458 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
459 |
+
# shape = (4, H // 8, W // 8)
|
460 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
461 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
462 |
+
# if self.save_memory:
|
463 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
464 |
+
# x_samples = self.model.decode_first_stage(samples)
|
465 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
|
466 |
+
# cpu().numpy().clip(0,255).astype(np.uint8)
|
467 |
+
# updated_image_path = get_new_image_name(image_path, func_name="line2image")
|
468 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
469 |
+
# real_image.save(updated_image_path)
|
470 |
+
# return updated_image_path
|
|
|
471 |
|
472 |
+
class image2hed_new:
|
473 |
def __init__(self):
|
474 |
print("Direct detect soft HED boundary...")
|
475 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
476 |
self.resolution = 512
|
477 |
|
478 |
def inference(self, inputs):
|
|
|
480 |
image = Image.open(inputs)
|
481 |
image = np.array(image)
|
482 |
image = HWC3(image)
|
483 |
+
image = Image.fromarray(resize_image(image, self.resolution))
|
484 |
+
hed = self.detector(image)
|
485 |
+
|
486 |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
487 |
+
hed.save(updated_image_path)
|
|
|
488 |
return updated_image_path
|
489 |
|
490 |
+
class hed2image_new:
|
|
|
491 |
def __init__(self, device):
|
492 |
print("Initialize the hed2image model...")
|
493 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
494 |
+
"fusing/stable-diffusion-v1-5-controlnet-hed"
|
495 |
+
)
|
496 |
+
|
497 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
498 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
499 |
+
)
|
500 |
+
|
501 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
502 |
+
self.pipe.to(device)
|
503 |
self.image_resolution = 512
|
504 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
505 |
self.seed = -1
|
506 |
+
self.unconditional_guidance_scale = 9.0
|
507 |
self.a_prompt = 'best quality, extremely detailed'
|
508 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
509 |
|
|
|
512 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
513 |
image = Image.open(image_path)
|
514 |
image = np.array(image)
|
|
|
515 |
img = resize_image(HWC3(image), self.image_resolution)
|
516 |
+
img = Image.fromarray(img)
|
517 |
+
|
|
|
|
|
|
|
518 |
self.seed = random.randint(0, 65535)
|
519 |
seed_everything(self.seed)
|
520 |
+
|
521 |
+
prompt = instruct_text
|
522 |
+
prompt = prompt + ', ' + self.a_prompt
|
523 |
+
image = \
|
524 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
525 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
526 |
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
527 |
+
image.save(updated_image_path)
|
|
|
528 |
return updated_image_path
|
529 |
|
530 |
+
# class image2hed:
|
531 |
+
# def __init__(self):
|
532 |
+
# print("Direct detect soft HED boundary...")
|
533 |
+
# self.detector = HEDdetector()
|
534 |
+
# self.resolution = 512
|
535 |
+
#
|
536 |
+
# def inference(self, inputs):
|
537 |
+
# print("===>Starting image2hed Inference")
|
538 |
+
# image = Image.open(inputs)
|
539 |
+
# image = np.array(image)
|
540 |
+
# image = HWC3(image)
|
541 |
+
# hed = self.detector(resize_image(image, self.resolution))
|
542 |
+
# updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
|
543 |
+
# image = Image.fromarray(hed)
|
544 |
+
# image.save(updated_image_path)
|
545 |
+
# return updated_image_path
|
546 |
+
#
|
547 |
+
#
|
548 |
+
# class hed2image:
|
549 |
+
# def __init__(self, device):
|
550 |
+
# print("Initialize the hed2image model...")
|
551 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
552 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
|
553 |
+
# self.model = model.to(device)
|
554 |
+
# self.device = device
|
555 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
556 |
+
# self.ddim_steps = 20
|
557 |
+
# self.image_resolution = 512
|
558 |
+
# self.num_samples = 1
|
559 |
+
# self.save_memory = False
|
560 |
+
# self.strength = 1.0
|
561 |
+
# self.guess_mode = False
|
562 |
+
# self.scale = 9.0
|
563 |
+
# self.seed = -1
|
564 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
565 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
566 |
+
#
|
567 |
+
# def inference(self, inputs):
|
568 |
+
# print("===>Starting hed2image Inference")
|
569 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
570 |
+
# image = Image.open(image_path)
|
571 |
+
# image = np.array(image)
|
572 |
+
# prompt = instruct_text
|
573 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
574 |
+
# H, W, C = img.shape
|
575 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
576 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
577 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
578 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
579 |
+
# self.seed = random.randint(0, 65535)
|
580 |
+
# seed_everything(self.seed)
|
581 |
+
# if self.save_memory:
|
582 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
583 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
584 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
585 |
+
# shape = (4, H // 8, W // 8)
|
586 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
587 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
588 |
+
# if self.save_memory:
|
589 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
590 |
+
# x_samples = self.model.decode_first_stage(samples)
|
591 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
592 |
+
# updated_image_path = get_new_image_name(image_path, func_name="hed2image")
|
593 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
594 |
+
# real_image.save(updated_image_path)
|
595 |
+
# return updated_image_path
|
596 |
+
class image2scribble_new:
|
597 |
def __init__(self):
|
598 |
print("Direct detect scribble.")
|
599 |
+
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
600 |
self.resolution = 512
|
601 |
|
602 |
def inference(self, inputs):
|
|
|
604 |
image = Image.open(inputs)
|
605 |
image = np.array(image)
|
606 |
image = HWC3(image)
|
|
|
|
|
607 |
image = resize_image(image, self.resolution)
|
608 |
+
image = Image.fromarray(image)
|
609 |
+
scribble = self.detector(image, scribble=True)
|
610 |
+
scribble = np.array(scribble)
|
611 |
+
scribble = 255 - scribble
|
612 |
+
scribble = Image.fromarray(scribble)
|
|
|
|
|
613 |
updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
614 |
+
scribble.save(updated_image_path)
|
|
|
615 |
return updated_image_path
|
616 |
|
617 |
+
class scribble2image_new:
|
618 |
def __init__(self, device):
|
619 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
620 |
+
"fusing/stable-diffusion-v1-5-controlnet-scribble"
|
621 |
+
)
|
622 |
+
|
623 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
624 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
625 |
+
)
|
626 |
+
|
627 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
628 |
+
self.pipe.to(device)
|
629 |
self.image_resolution = 512
|
630 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
631 |
self.seed = -1
|
632 |
+
self.unconditional_guidance_scale = 9.0
|
633 |
self.a_prompt = 'best quality, extremely detailed'
|
634 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
635 |
|
636 |
def inference(self, inputs):
|
637 |
print("===>Starting scribble2image Inference")
|
|
|
638 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
639 |
image = Image.open(image_path)
|
640 |
image = np.array(image)
|
|
|
641 |
image = 255 - image
|
642 |
img = resize_image(HWC3(image), self.image_resolution)
|
643 |
+
img = Image.fromarray(img)
|
644 |
+
|
|
|
|
|
|
|
645 |
self.seed = random.randint(0, 65535)
|
646 |
seed_everything(self.seed)
|
647 |
+
|
648 |
+
prompt = instruct_text
|
649 |
+
prompt = prompt + ', ' + self.a_prompt
|
650 |
+
image = \
|
651 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
652 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
653 |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
654 |
+
image.save(updated_image_path)
|
|
|
655 |
return updated_image_path
|
656 |
|
657 |
+
# class image2scribble:
|
658 |
+
# def __init__(self):
|
659 |
+
# print("Direct detect scribble.")
|
660 |
+
# self.detector = HEDdetector()
|
661 |
+
# self.resolution = 512
|
662 |
+
#
|
663 |
+
# def inference(self, inputs):
|
664 |
+
# print("===>Starting image2scribble Inference")
|
665 |
+
# image = Image.open(inputs)
|
666 |
+
# image = np.array(image)
|
667 |
+
# image = HWC3(image)
|
668 |
+
# detected_map = self.detector(resize_image(image, self.resolution))
|
669 |
+
# detected_map = HWC3(detected_map)
|
670 |
+
# image = resize_image(image, self.resolution)
|
671 |
+
# H, W, C = image.shape
|
672 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
673 |
+
# detected_map = nms(detected_map, 127, 3.0)
|
674 |
+
# detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
675 |
+
# detected_map[detected_map > 4] = 255
|
676 |
+
# detected_map[detected_map < 255] = 0
|
677 |
+
# detected_map = 255 - detected_map
|
678 |
+
# updated_image_path = get_new_image_name(inputs, func_name="scribble")
|
679 |
+
# image = Image.fromarray(detected_map)
|
680 |
+
# image.save(updated_image_path)
|
681 |
+
# return updated_image_path
|
682 |
+
#
|
683 |
+
# class scribble2image:
|
684 |
+
# def __init__(self, device):
|
685 |
+
# print("Initialize the scribble2image model...")
|
686 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
687 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
|
688 |
+
# self.model = model.to(device)
|
689 |
+
# self.device = device
|
690 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
691 |
+
# self.ddim_steps = 20
|
692 |
+
# self.image_resolution = 512
|
693 |
+
# self.num_samples = 1
|
694 |
+
# self.save_memory = False
|
695 |
+
# self.strength = 1.0
|
696 |
+
# self.guess_mode = False
|
697 |
+
# self.scale = 9.0
|
698 |
+
# self.seed = -1
|
699 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
700 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
701 |
+
#
|
702 |
+
# def inference(self, inputs):
|
703 |
+
# print("===>Starting scribble2image Inference")
|
704 |
+
# print(f'sketch device {self.device}')
|
705 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
706 |
+
# image = Image.open(image_path)
|
707 |
+
# image = np.array(image)
|
708 |
+
# prompt = instruct_text
|
709 |
+
# image = 255 - image
|
710 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
711 |
+
# H, W, C = img.shape
|
712 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
713 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
714 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
715 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
716 |
+
# self.seed = random.randint(0, 65535)
|
717 |
+
# seed_everything(self.seed)
|
718 |
+
# if self.save_memory:
|
719 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
720 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
721 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
722 |
+
# shape = (4, H // 8, W // 8)
|
723 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
724 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
725 |
+
# if self.save_memory:
|
726 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
727 |
+
# x_samples = self.model.decode_first_stage(samples)
|
728 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
729 |
+
# updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
|
730 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
731 |
+
# real_image.save(updated_image_path)
|
732 |
+
# return updated_image_path
|
733 |
+
|
734 |
+
class image2pose_new:
|
735 |
def __init__(self):
|
736 |
+
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
|
|
737 |
self.resolution = 512
|
738 |
|
739 |
def inference(self, inputs):
|
|
|
741 |
image = Image.open(inputs)
|
742 |
image = np.array(image)
|
743 |
image = HWC3(image)
|
|
|
|
|
744 |
image = resize_image(image, self.resolution)
|
745 |
+
image = Image.fromarray(image)
|
746 |
+
pose = self.detector(image)
|
747 |
+
|
748 |
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
749 |
+
pose.save(updated_image_path)
|
|
|
750 |
return updated_image_path
|
751 |
|
752 |
+
class pose2image_new:
|
753 |
def __init__(self, device):
|
754 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
755 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose"
|
756 |
+
)
|
757 |
+
|
758 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
759 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
760 |
+
)
|
761 |
+
|
762 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
763 |
+
self.pipe.to(device)
|
764 |
self.image_resolution = 512
|
765 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
766 |
self.seed = -1
|
767 |
+
self.unconditional_guidance_scale = 9.0
|
768 |
self.a_prompt = 'best quality, extremely detailed'
|
769 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
770 |
|
|
|
773 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
774 |
image = Image.open(image_path)
|
775 |
image = np.array(image)
|
|
|
776 |
img = resize_image(HWC3(image), self.image_resolution)
|
777 |
+
img = Image.fromarray(img)
|
778 |
+
|
|
|
|
|
|
|
779 |
self.seed = random.randint(0, 65535)
|
780 |
seed_everything(self.seed)
|
781 |
+
|
782 |
+
prompt = instruct_text
|
783 |
+
prompt = prompt + ', ' + self.a_prompt
|
784 |
+
image = \
|
785 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
786 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
787 |
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
788 |
+
image.save(updated_image_path)
|
|
|
789 |
return updated_image_path
|
790 |
|
|
|
|
|
|
|
|
|
|
|
791 |
|
792 |
+
# class image2pose:
|
793 |
+
# def __init__(self):
|
794 |
+
# print("Direct human pose.")
|
795 |
+
# self.detector = OpenposeDetector()
|
796 |
+
# self.resolution = 512
|
797 |
+
#
|
798 |
+
# def inference(self, inputs):
|
799 |
+
# print("===>Starting image2pose Inference")
|
800 |
+
# image = Image.open(inputs)
|
801 |
+
# image = np.array(image)
|
802 |
+
# image = HWC3(image)
|
803 |
+
# detected_map, _ = self.detector(resize_image(image, self.resolution))
|
804 |
+
# detected_map = HWC3(detected_map)
|
805 |
+
# image = resize_image(image, self.resolution)
|
806 |
+
# H, W, C = image.shape
|
807 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
808 |
+
# updated_image_path = get_new_image_name(inputs, func_name="human-pose")
|
809 |
+
# image = Image.fromarray(detected_map)
|
810 |
+
# image.save(updated_image_path)
|
811 |
+
# return updated_image_path
|
812 |
+
#
|
813 |
+
# class pose2image:
|
814 |
+
# def __init__(self, device):
|
815 |
+
# print("Initialize the pose2image model...")
|
816 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
817 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
|
818 |
+
# self.model = model.to(device)
|
819 |
+
# self.device = device
|
820 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
821 |
+
# self.ddim_steps = 20
|
822 |
+
# self.image_resolution = 512
|
823 |
+
# self.num_samples = 1
|
824 |
+
# self.save_memory = False
|
825 |
+
# self.strength = 1.0
|
826 |
+
# self.guess_mode = False
|
827 |
+
# self.scale = 9.0
|
828 |
+
# self.seed = -1
|
829 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
830 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
831 |
+
#
|
832 |
+
# def inference(self, inputs):
|
833 |
+
# print("===>Starting pose2image Inference")
|
834 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
835 |
+
# image = Image.open(image_path)
|
836 |
+
# image = np.array(image)
|
837 |
+
# prompt = instruct_text
|
838 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
839 |
+
# H, W, C = img.shape
|
840 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
841 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
842 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
843 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
844 |
+
# self.seed = random.randint(0, 65535)
|
845 |
+
# seed_everything(self.seed)
|
846 |
+
# if self.save_memory:
|
847 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
848 |
+
# cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
849 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
850 |
+
# shape = (4, H // 8, W // 8)
|
851 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
852 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
853 |
+
# if self.save_memory:
|
854 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
855 |
+
# x_samples = self.model.decode_first_stage(samples)
|
856 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
857 |
+
# updated_image_path = get_new_image_name(image_path, func_name="pose2image")
|
858 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
859 |
+
# real_image.save(updated_image_path)
|
860 |
+
# return updated_image_path
|
861 |
+
class image2seg_new:
|
862 |
+
def __init__(self):
|
863 |
+
print("Initialize image2segmentation Inference")
|
864 |
+
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
865 |
+
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
866 |
+
self.resolution = 512
|
867 |
+
|
868 |
+
def inference(self, inputs):
|
869 |
+
image = Image.open(inputs)
|
870 |
+
image = np.array(image)
|
871 |
+
image = HWC3(image)
|
872 |
+
image = resize_image(image, self.resolution)
|
873 |
+
image = Image.fromarray(image)
|
874 |
+
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values
|
875 |
+
|
876 |
+
with torch.no_grad():
|
877 |
+
outputs = self.image_segmentor(pixel_values)
|
878 |
+
|
879 |
+
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
880 |
+
|
881 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
882 |
+
|
883 |
+
palette = np.array(ade_palette())
|
884 |
+
|
885 |
+
for label, color in enumerate(palette):
|
886 |
+
color_seg[seg == label, :] = color
|
887 |
+
|
888 |
+
color_seg = color_seg.astype(np.uint8)
|
889 |
+
|
890 |
+
segmentation = Image.fromarray(color_seg)
|
891 |
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
892 |
+
segmentation.save(updated_image_path)
|
|
|
893 |
return updated_image_path
|
894 |
|
895 |
+
class seg2image_new:
|
896 |
def __init__(self, device):
|
897 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
898 |
+
"fusing/stable-diffusion-v1-5-controlnet-seg"
|
899 |
+
)
|
900 |
+
|
901 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
902 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
903 |
+
)
|
904 |
+
|
905 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
906 |
+
self.pipe.to(device)
|
907 |
self.image_resolution = 512
|
908 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
909 |
self.seed = -1
|
910 |
+
self.unconditional_guidance_scale = 9.0
|
911 |
self.a_prompt = 'best quality, extremely detailed'
|
912 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
913 |
|
|
|
916 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
917 |
image = Image.open(image_path)
|
918 |
image = np.array(image)
|
|
|
919 |
img = resize_image(HWC3(image), self.image_resolution)
|
920 |
+
img = Image.fromarray(img)
|
921 |
+
|
|
|
|
|
|
|
922 |
self.seed = random.randint(0, 65535)
|
923 |
seed_everything(self.seed)
|
924 |
+
|
925 |
+
prompt = instruct_text
|
926 |
+
prompt = prompt + ', ' + self.a_prompt
|
927 |
+
image = \
|
928 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
929 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
930 |
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
931 |
+
image.save(updated_image_path)
|
|
|
932 |
return updated_image_path
|
933 |
|
934 |
+
|
935 |
+
|
936 |
+
# class image2seg:
|
937 |
+
# def __init__(self):
|
938 |
+
# print("===>Starting image2seg Inference")
|
939 |
+
# print("Direct segmentations.")
|
940 |
+
# self.detector = UniformerDetector()
|
941 |
+
# self.resolution = 512
|
942 |
+
#
|
943 |
+
# def inference(self, inputs):
|
944 |
+
# print("===>Starting image2seg Inference")
|
945 |
+
# image = Image.open(inputs)
|
946 |
+
# image = np.array(image)
|
947 |
+
# image = HWC3(image)
|
948 |
+
# detected_map = self.detector(resize_image(image, self.resolution))
|
949 |
+
# detected_map = HWC3(detected_map)
|
950 |
+
# image = resize_image(image, self.resolution)
|
951 |
+
# H, W, C = image.shape
|
952 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
953 |
+
# updated_image_path = get_new_image_name(inputs, func_name="segmentation")
|
954 |
+
# image = Image.fromarray(detected_map)
|
955 |
+
# image.save(updated_image_path)
|
956 |
+
# return updated_image_path
|
957 |
+
#
|
958 |
+
# class seg2image:
|
959 |
+
# def __init__(self, device):
|
960 |
+
# print("Initialize the seg2image model...")
|
961 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
962 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
|
963 |
+
# self.model = model.to(device)
|
964 |
+
# self.device = device
|
965 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
966 |
+
# self.ddim_steps = 20
|
967 |
+
# self.image_resolution = 512
|
968 |
+
# self.num_samples = 1
|
969 |
+
# self.save_memory = False
|
970 |
+
# self.strength = 1.0
|
971 |
+
# self.guess_mode = False
|
972 |
+
# self.scale = 9.0
|
973 |
+
# self.seed = -1
|
974 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
975 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
976 |
+
#
|
977 |
+
# def inference(self, inputs):
|
978 |
+
# print("===>Starting seg2image Inference")
|
979 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
980 |
+
# image = Image.open(image_path)
|
981 |
+
# image = np.array(image)
|
982 |
+
# prompt = instruct_text
|
983 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
984 |
+
# H, W, C = img.shape
|
985 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
986 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
987 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
988 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
989 |
+
# self.seed = random.randint(0, 65535)
|
990 |
+
# seed_everything(self.seed)
|
991 |
+
# if self.save_memory:
|
992 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
993 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
994 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
995 |
+
# shape = (4, H // 8, W // 8)
|
996 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
997 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
998 |
+
# if self.save_memory:
|
999 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
1000 |
+
# x_samples = self.model.decode_first_stage(samples)
|
1001 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
1002 |
+
# updated_image_path = get_new_image_name(image_path, func_name="segment2image")
|
1003 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
1004 |
+
# real_image.save(updated_image_path)
|
1005 |
+
# return updated_image_path
|
1006 |
+
class image2depth_new:
|
1007 |
def __init__(self):
|
1008 |
+
print("initialize depth estimation")
|
1009 |
+
self.depth_estimator = pipeline('depth-estimation')
|
1010 |
self.resolution = 512
|
1011 |
|
1012 |
def inference(self, inputs):
|
|
|
1013 |
image = Image.open(inputs)
|
1014 |
image = np.array(image)
|
1015 |
image = HWC3(image)
|
|
|
|
|
1016 |
image = resize_image(image, self.resolution)
|
1017 |
+
image = Image.fromarray(image)
|
1018 |
+
depth = self.depth_estimator(image)['depth']
|
1019 |
+
depth = np.array(depth)
|
1020 |
+
depth = depth[:, :, None]
|
1021 |
+
depth = np.concatenate([depth, depth, depth], axis=2)
|
1022 |
+
depth = Image.fromarray(depth)
|
1023 |
updated_image_path = get_new_image_name(inputs, func_name="depth")
|
1024 |
+
depth.save(updated_image_path)
|
|
|
1025 |
return updated_image_path
|
1026 |
|
1027 |
+
class depth2image_new:
|
1028 |
def __init__(self, device):
|
1029 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
1030 |
+
"fusing/stable-diffusion-v1-5-controlnet-depth"
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
1034 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
1038 |
+
self.pipe.to(device)
|
1039 |
self.image_resolution = 512
|
1040 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
1041 |
self.seed = -1
|
1042 |
+
self.unconditional_guidance_scale = 9.0
|
1043 |
self.a_prompt = 'best quality, extremely detailed'
|
1044 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
1045 |
|
|
|
1048 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
1049 |
image = Image.open(image_path)
|
1050 |
image = np.array(image)
|
|
|
1051 |
img = resize_image(HWC3(image), self.image_resolution)
|
1052 |
+
img = Image.fromarray(img)
|
1053 |
+
|
|
|
|
|
|
|
1054 |
self.seed = random.randint(0, 65535)
|
1055 |
seed_everything(self.seed)
|
1056 |
+
|
1057 |
+
prompt = instruct_text
|
1058 |
+
prompt = prompt + ', ' + self.a_prompt
|
1059 |
+
image = \
|
1060 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
1061 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
1062 |
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
1063 |
+
image.save(updated_image_path)
|
|
|
1064 |
return updated_image_path
|
1065 |
|
1066 |
+
# class image2depth:
|
1067 |
+
# def __init__(self):
|
1068 |
+
# print("Direct depth estimation.")
|
1069 |
+
# self.detector = MidasDetector()
|
1070 |
+
# self.resolution = 512
|
1071 |
+
#
|
1072 |
+
# def inference(self, inputs):
|
1073 |
+
# print("===>Starting image2depth Inference")
|
1074 |
+
# image = Image.open(inputs)
|
1075 |
+
# image = np.array(image)
|
1076 |
+
# image = HWC3(image)
|
1077 |
+
# detected_map, _ = self.detector(resize_image(image, self.resolution))
|
1078 |
+
# detected_map = HWC3(detected_map)
|
1079 |
+
# image = resize_image(image, self.resolution)
|
1080 |
+
# H, W, C = image.shape
|
1081 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
1082 |
+
# updated_image_path = get_new_image_name(inputs, func_name="depth")
|
1083 |
+
# image = Image.fromarray(detected_map)
|
1084 |
+
# image.save(updated_image_path)
|
1085 |
+
# return updated_image_path
|
1086 |
+
#
|
1087 |
+
# class depth2image:
|
1088 |
+
# def __init__(self, device):
|
1089 |
+
# print("Initialize depth2image model...")
|
1090 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
1091 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
|
1092 |
+
# self.model = model.to(device)
|
1093 |
+
# self.device = device
|
1094 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
1095 |
+
# self.ddim_steps = 20
|
1096 |
+
# self.image_resolution = 512
|
1097 |
+
# self.num_samples = 1
|
1098 |
+
# self.save_memory = False
|
1099 |
+
# self.strength = 1.0
|
1100 |
+
# self.guess_mode = False
|
1101 |
+
# self.scale = 9.0
|
1102 |
+
# self.seed = -1
|
1103 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
1104 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
1105 |
+
#
|
1106 |
+
# def inference(self, inputs):
|
1107 |
+
# print("===>Starting depth2image Inference")
|
1108 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
1109 |
+
# image = Image.open(image_path)
|
1110 |
+
# image = np.array(image)
|
1111 |
+
# prompt = instruct_text
|
1112 |
+
# img = resize_image(HWC3(image), self.image_resolution)
|
1113 |
+
# H, W, C = img.shape
|
1114 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
1115 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
1116 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
1117 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
1118 |
+
# self.seed = random.randint(0, 65535)
|
1119 |
+
# seed_everything(self.seed)
|
1120 |
+
# if self.save_memory:
|
1121 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
1122 |
+
# cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
1123 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
1124 |
+
# shape = (4, H // 8, W // 8)
|
1125 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
1126 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
1127 |
+
# if self.save_memory:
|
1128 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
1129 |
+
# x_samples = self.model.decode_first_stage(samples)
|
1130 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
1131 |
+
# updated_image_path = get_new_image_name(image_path, func_name="depth2image")
|
1132 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
1133 |
+
# real_image.save(updated_image_path)
|
1134 |
+
# return updated_image_path
|
1135 |
+
|
1136 |
+
class image2normal_new:
|
1137 |
def __init__(self):
|
1138 |
+
print("normal estimation")
|
1139 |
+
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
|
1140 |
self.resolution = 512
|
1141 |
+
self.bg_threhold = 0.4
|
1142 |
|
1143 |
def inference(self, inputs):
|
|
|
1144 |
image = Image.open(inputs)
|
1145 |
image = np.array(image)
|
1146 |
image = HWC3(image)
|
|
|
|
|
1147 |
image = resize_image(image, self.resolution)
|
1148 |
+
image = Image.fromarray(image)
|
1149 |
+
image = self.depth_estimator(image)['predicted_depth'][0]
|
1150 |
+
|
1151 |
+
image = image.numpy()
|
1152 |
+
|
1153 |
+
image_depth = image.copy()
|
1154 |
+
image_depth -= np.min(image_depth)
|
1155 |
+
image_depth /= np.max(image_depth)
|
1156 |
+
|
1157 |
+
bg_threhold = 0.4
|
1158 |
+
|
1159 |
+
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
1160 |
+
x[image_depth < bg_threhold] = 0
|
1161 |
+
|
1162 |
+
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
1163 |
+
y[image_depth < bg_threhold] = 0
|
1164 |
+
|
1165 |
+
z = np.ones_like(x) * np.pi * 2.0
|
1166 |
+
|
1167 |
+
image = np.stack([x, y, z], axis=2)
|
1168 |
+
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
1169 |
+
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
1170 |
+
image = Image.fromarray(image)
|
1171 |
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
|
|
1172 |
image.save(updated_image_path)
|
1173 |
return updated_image_path
|
1174 |
|
1175 |
+
class normal2image_new:
|
1176 |
def __init__(self, device):
|
1177 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
1178 |
+
"fusing/stable-diffusion-v1-5-controlnet-normal"
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
1182 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
1186 |
+
self.pipe.to(device)
|
1187 |
self.image_resolution = 512
|
1188 |
+
self.num_inference_steps = 20
|
|
|
|
|
|
|
|
|
1189 |
self.seed = -1
|
1190 |
+
self.unconditional_guidance_scale = 9.0
|
1191 |
self.a_prompt = 'best quality, extremely detailed'
|
1192 |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
1193 |
|
|
|
1196 |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
1197 |
image = Image.open(image_path)
|
1198 |
image = np.array(image)
|
1199 |
+
img = resize_image(HWC3(image), self.image_resolution)
|
1200 |
+
img = Image.fromarray(img)
|
1201 |
+
|
|
|
|
|
|
|
|
|
|
|
1202 |
self.seed = random.randint(0, 65535)
|
1203 |
seed_everything(self.seed)
|
1204 |
+
|
1205 |
+
prompt = instruct_text
|
1206 |
+
prompt = prompt + ', ' + self.a_prompt
|
1207 |
+
image = \
|
1208 |
+
self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt,
|
1209 |
+
guidance_scale=self.unconditional_guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
1210 |
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
1211 |
+
image.save(updated_image_path)
|
|
|
1212 |
return updated_image_path
|
1213 |
|
1214 |
+
# class image2normal:
|
1215 |
+
# def __init__(self):
|
1216 |
+
# print("Direct normal estimation.")
|
1217 |
+
# self.detector = MidasDetector()
|
1218 |
+
# self.resolution = 512
|
1219 |
+
# self.bg_threshold = 0.4
|
1220 |
+
#
|
1221 |
+
# def inference(self, inputs):
|
1222 |
+
# print("===>Starting image2 normal Inference")
|
1223 |
+
# image = Image.open(inputs)
|
1224 |
+
# image = np.array(image)
|
1225 |
+
# image = HWC3(image)
|
1226 |
+
# _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
|
1227 |
+
# detected_map = HWC3(detected_map)
|
1228 |
+
# image = resize_image(image, self.resolution)
|
1229 |
+
# H, W, C = image.shape
|
1230 |
+
# detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
1231 |
+
# updated_image_path = get_new_image_name(inputs, func_name="normal-map")
|
1232 |
+
# image = Image.fromarray(detected_map)
|
1233 |
+
# image.save(updated_image_path)
|
1234 |
+
# return updated_image_path
|
1235 |
+
#
|
1236 |
+
# class normal2image:
|
1237 |
+
# def __init__(self, device):
|
1238 |
+
# print("Initialize normal2image model...")
|
1239 |
+
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
|
1240 |
+
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
|
1241 |
+
# self.model = model.to(device)
|
1242 |
+
# self.device = device
|
1243 |
+
# self.ddim_sampler = DDIMSampler(self.model)
|
1244 |
+
# self.ddim_steps = 20
|
1245 |
+
# self.image_resolution = 512
|
1246 |
+
# self.num_samples = 1
|
1247 |
+
# self.save_memory = False
|
1248 |
+
# self.strength = 1.0
|
1249 |
+
# self.guess_mode = False
|
1250 |
+
# self.scale = 9.0
|
1251 |
+
# self.seed = -1
|
1252 |
+
# self.a_prompt = 'best quality, extremely detailed'
|
1253 |
+
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
|
1254 |
+
#
|
1255 |
+
# def inference(self, inputs):
|
1256 |
+
# print("===>Starting normal2image Inference")
|
1257 |
+
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
|
1258 |
+
# image = Image.open(image_path)
|
1259 |
+
# image = np.array(image)
|
1260 |
+
# prompt = instruct_text
|
1261 |
+
# img = image[:, :, ::-1].copy()
|
1262 |
+
# img = resize_image(HWC3(img), self.image_resolution)
|
1263 |
+
# H, W, C = img.shape
|
1264 |
+
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
|
1265 |
+
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
|
1266 |
+
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
|
1267 |
+
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
1268 |
+
# self.seed = random.randint(0, 65535)
|
1269 |
+
# seed_everything(self.seed)
|
1270 |
+
# if self.save_memory:
|
1271 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
1272 |
+
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
|
1273 |
+
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
|
1274 |
+
# shape = (4, H // 8, W // 8)
|
1275 |
+
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
|
1276 |
+
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
|
1277 |
+
# if self.save_memory:
|
1278 |
+
# self.model.low_vram_shift(is_diffusing=False)
|
1279 |
+
# x_samples = self.model.decode_first_stage(samples)
|
1280 |
+
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
1281 |
+
# updated_image_path = get_new_image_name(image_path, func_name="normal2image")
|
1282 |
+
# real_image = Image.fromarray(x_samples[0]) # default the index0 image
|
1283 |
+
# real_image.save(updated_image_path)
|
1284 |
+
# return updated_image_path
|
1285 |
+
|
1286 |
class BLIPVQA:
|
1287 |
def __init__(self, device):
|
1288 |
print("Initializing BLIP VQA to %s" % device)
|