Spaces:
Runtime error
Runtime error
LanHarmony
commited on
Commit
•
9c259e8
1
Parent(s):
3cf1439
half precision
Browse files
visual_foundation_models.py
CHANGED
@@ -108,7 +108,7 @@ class MaskFormer:
|
|
108 |
def __init__(self, device):
|
109 |
self.device = device
|
110 |
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
111 |
-
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
|
112 |
|
113 |
def inference(self, image_path, text):
|
114 |
threshold = 0.5
|
@@ -137,7 +137,7 @@ class ImageEditing:
|
|
137 |
print("Initializing StableDiffusionInpaint to %s" % device)
|
138 |
self.device = device
|
139 |
self.mask_former = MaskFormer(device=self.device)
|
140 |
-
self.inpainting = StableDiffusionInpaintPipeline.from_pretrained(
|
141 |
|
142 |
def remove_part_of_image(self, input):
|
143 |
image_path, to_be_removed_txt = input.split(",")
|
@@ -177,8 +177,8 @@ class T2I:
|
|
177 |
self.device = device
|
178 |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
179 |
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
180 |
-
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
181 |
-
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
|
182 |
self.pipe.to(device)
|
183 |
|
184 |
def inference(self, text):
|
@@ -194,8 +194,8 @@ class ImageCaptioning:
|
|
194 |
def __init__(self, device):
|
195 |
print("Initializing ImageCaptioning to %s" % device)
|
196 |
self.device = device
|
197 |
-
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
198 |
-
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
|
199 |
|
200 |
def inference(self, image_path):
|
201 |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
|
@@ -225,11 +225,11 @@ class image2canny_new:
|
|
225 |
class canny2image_new:
|
226 |
def __init__(self, device):
|
227 |
self.controlnet = ControlNetModel.from_pretrained(
|
228 |
-
"fusing/stable-diffusion-v1-5-controlnet-canny"
|
229 |
)
|
230 |
|
231 |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
232 |
-
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
|
233 |
)
|
234 |
|
235 |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
|
|
108 |
def __init__(self, device):
|
109 |
self.device = device
|
110 |
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
111 |
+
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined", torch_dtype=torch.float16).to(device)
|
112 |
|
113 |
def inference(self, image_path, text):
|
114 |
threshold = 0.5
|
|
|
137 |
print("Initializing StableDiffusionInpaint to %s" % device)
|
138 |
self.device = device
|
139 |
self.mask_former = MaskFormer(device=self.device)
|
140 |
+
self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16).to(device)
|
141 |
|
142 |
def remove_part_of_image(self, input):
|
143 |
image_path, to_be_removed_txt = input.split(",")
|
|
|
177 |
self.device = device
|
178 |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
179 |
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
180 |
+
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion", torch_dtype=torch.float16)
|
181 |
+
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device, torch_dtype=torch.float16)
|
182 |
self.pipe.to(device)
|
183 |
|
184 |
def inference(self, text):
|
|
|
194 |
def __init__(self, device):
|
195 |
print("Initializing ImageCaptioning to %s" % device)
|
196 |
self.device = device
|
197 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16)
|
198 |
+
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to(self.device)
|
199 |
|
200 |
def inference(self, image_path):
|
201 |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
|
|
|
225 |
class canny2image_new:
|
226 |
def __init__(self, device):
|
227 |
self.controlnet = ControlNetModel.from_pretrained(
|
228 |
+
"fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16
|
229 |
)
|
230 |
|
231 |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
232 |
+
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
|
233 |
)
|
234 |
|
235 |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|