LanHarmony commited on
Commit
9c259e8
1 Parent(s): 3cf1439

half precision

Browse files
Files changed (1) hide show
  1. visual_foundation_models.py +8 -8
visual_foundation_models.py CHANGED
@@ -108,7 +108,7 @@ class MaskFormer:
108
  def __init__(self, device):
109
  self.device = device
110
  self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
111
- self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
112
 
113
  def inference(self, image_path, text):
114
  threshold = 0.5
@@ -137,7 +137,7 @@ class ImageEditing:
137
  print("Initializing StableDiffusionInpaint to %s" % device)
138
  self.device = device
139
  self.mask_former = MaskFormer(device=self.device)
140
- self.inpainting = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",).to(device)
141
 
142
  def remove_part_of_image(self, input):
143
  image_path, to_be_removed_txt = input.split(",")
@@ -177,8 +177,8 @@ class T2I:
177
  self.device = device
178
  self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
179
  self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
180
- self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
181
- self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
182
  self.pipe.to(device)
183
 
184
  def inference(self, text):
@@ -194,8 +194,8 @@ class ImageCaptioning:
194
  def __init__(self, device):
195
  print("Initializing ImageCaptioning to %s" % device)
196
  self.device = device
197
- self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
198
- self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
199
 
200
  def inference(self, image_path):
201
  inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
@@ -225,11 +225,11 @@ class image2canny_new:
225
  class canny2image_new:
226
  def __init__(self, device):
227
  self.controlnet = ControlNetModel.from_pretrained(
228
- "fusing/stable-diffusion-v1-5-controlnet-canny"
229
  )
230
 
231
  self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
232
- "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
233
  )
234
 
235
  self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
 
108
  def __init__(self, device):
109
  self.device = device
110
  self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
111
+ self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined", torch_dtype=torch.float16).to(device)
112
 
113
  def inference(self, image_path, text):
114
  threshold = 0.5
 
137
  print("Initializing StableDiffusionInpaint to %s" % device)
138
  self.device = device
139
  self.mask_former = MaskFormer(device=self.device)
140
+ self.inpainting = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16).to(device)
141
 
142
  def remove_part_of_image(self, input):
143
  image_path, to_be_removed_txt = input.split(",")
 
177
  self.device = device
178
  self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
179
  self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
180
+ self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion", torch_dtype=torch.float16)
181
+ self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device, torch_dtype=torch.float16)
182
  self.pipe.to(device)
183
 
184
  def inference(self, text):
 
194
  def __init__(self, device):
195
  print("Initializing ImageCaptioning to %s" % device)
196
  self.device = device
197
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16)
198
+ self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to(self.device)
199
 
200
  def inference(self, image_path):
201
  inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
 
225
  class canny2image_new:
226
  def __init__(self, device):
227
  self.controlnet = ControlNetModel.from_pretrained(
228
+ "fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=torch.float16
229
  )
230
 
231
  self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
232
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=torch.float16
233
  )
234
 
235
  self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)