LanHarmony commited on
Commit
ba47d90
·
1 Parent(s): 2769cd9

add infinity and chinese support

Browse files
Files changed (2) hide show
  1. app.py +72 -10
  2. visual_foundation_models.py +159 -3
app.py CHANGED
@@ -42,6 +42,51 @@ Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to
42
  The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
43
  Thought: Do I need to use a tool? {agent_scratchpad}"""
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  from visual_foundation_models import *
46
  from langchain.agents.initialize import initialize_agent
47
  from langchain.agents.tools import Tool
@@ -74,21 +119,31 @@ class ConversationBot:
74
  if 'ImageCaptioning' not in load_dict:
75
  raise ValueError("You have to load ImageCaptioning as a basic function for VisualChatGPT")
76
 
77
- self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
78
- self.models = dict()
79
  for class_name, device in load_dict.items():
80
  self.models[class_name] = globals()[class_name](device=device)
81
 
 
 
 
 
 
 
 
 
 
82
  self.tools = []
83
- for class_name, instance in self.models.items():
84
  for e in dir(instance):
85
  if e.startswith('inference'):
86
  func = getattr(instance, e)
87
  self.tools.append(Tool(name=func.name, description=func.description, func=func))
 
88
 
89
  def run_text(self, text, state):
90
  self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
91
- res = self.agent({"input": text})
92
  res['output'] = res['output'].replace("\\", "/")
93
  response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
94
  state = state + [(text, response)]
@@ -118,7 +173,16 @@ class ConversationBot:
118
  f"Current Memory: {self.agent.memory.buffer}")
119
  return state, state, f'{txt} {image_filename} '
120
 
121
- def init_agent(self, openai_api_key):
 
 
 
 
 
 
 
 
 
122
  self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
123
  self.agent = initialize_agent(
124
  self.tools,
@@ -127,7 +191,7 @@ class ConversationBot:
127
  verbose=True,
128
  memory=self.memory,
129
  return_intermediate_steps=True,
130
- agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': VISUAL_CHATGPT_SUFFIX}, )
131
 
132
  return gr.update(visible = True)
133
 
@@ -147,11 +211,11 @@ with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
147
  gr.Markdown(
148
  """This is a demo to the work [Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models](https://github.com/microsoft/visual-chatgpt).<br>
149
  This space connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting.<br>
150
- This space currently only supports English (目前只支持英文对话, 中文正在开发中).<br>
151
  """
152
  )
153
 
154
  with gr.Row():
 
155
  openai_api_key_textbox = gr.Textbox(
156
  placeholder="Paste your OpenAI API key here to start Visual ChatGPT(sk-...) and press Enter ↵️",
157
  show_label=False,
@@ -191,9 +255,7 @@ with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
191
  <a href="https://huggingface.co/spaces/microsoft/visual_chatgpt?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
192
  </center>''')
193
 
194
-
195
-
196
- openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox], [input_raws])
197
  txt.submit(bot.run_text, [txt, state], [chatbot, state])
198
  txt.submit(lambda: "", None, txt)
199
  run.click(bot.run_text, [txt, state], [chatbot, state])
 
42
  The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
43
  Thought: Do I need to use a tool? {agent_scratchpad}"""
44
 
45
+ VISUAL_CHATGPT_PREFIX_CN = """Visual ChatGPT 旨在能够协助完成范围广泛的文本和视觉相关任务,从回答简单的问题到提供对广泛主题的深入解释和讨论。 Visual ChatGPT 能够根据收到的输入生成类似人类的文本,使其能够进行听起来自然的对话,并提供连贯且与手头主题相关的响应。
46
+
47
+ Visual ChatGPT 能够处理和理解大量文本和图像。作为一种语言模型,Visual ChatGPT 不能直接读取图像,但它有一系列工具来完成不同的视觉任务。每张图片都会有一个文件名,格式为“image/xxx.png”,Visual ChatGPT可以调用不同的工具来间接理解图片。在谈论图片时,Visual ChatGPT 对文件名的要求非常严格,绝不会伪造不存在的文件。在使用工具生成新的图像文件时,Visual ChatGPT也知道图像可能与用户需求不一样,会使用其他视觉问答工具或描述工具来观察真实图像。 Visual ChatGPT 能够按顺序使用工具,并且忠于工具观察输出,而不是伪造图像内容和图像文件名。如果生成新图像,它将记得提供上次工具观察的文件名。
48
+
49
+ Human 可能会向 Visual ChatGPT 提供带有描述的新图形。描述帮助 Visual ChatGPT 理解这个图像,但 Visual ChatGPT 应该使用工具来完成以下任务,而不是直接从描述中想象。有些工具将会返回英文描述,但你对用户的聊天应当采用中文。
50
+
51
+ 总的来说,Visual ChatGPT 是一个强大的可视化对话辅助工具,可以帮助处理范围广泛的任务,并提供关于范围广泛的主题的有价值的见解和信息。
52
+
53
+ 工具列表:
54
+ ------
55
+
56
+ Visual ChatGPT 可以使用这些工具:"""
57
+
58
+ VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN = """用户使用中文和你进行聊天,但是工具的参数应当使用英文。如果要调用工具,你必须遵循如下格式:
59
+
60
+ ```
61
+ Thought: Do I need to use a tool? Yes
62
+ Action: the action to take, should be one of [{tool_names}]
63
+ Action Input: the input to the action
64
+ Observation: the result of the action
65
+ ```
66
+
67
+ 当你不再需要继续调用工具,而是对观察结果进行总结回复时,你必须使用如下格式:
68
+
69
+
70
+ ```
71
+ Thought: Do I need to use a tool? No
72
+ {ai_prefix}: [your response here]
73
+ ```
74
+ """
75
+
76
+ VISUAL_CHATGPT_SUFFIX_CN = """你对文件名的正确性非常严格,而且永远不会伪造不存在的文件。
77
+
78
+ 开始!
79
+
80
+ 因为Visual ChatGPT是一个文本语言模型,必须使用工具去观察图片而不是依靠想象。
81
+ 推理想法和观察结果只对Visual ChatGPT可见,需要记得在最终回复时把重要的信息重复给用户,你只能给用户返回中文句子。我们一步一步思考。在你使用工具时,工具的参数只能是英文。
82
+
83
+ 聊天历史:
84
+ {chat_history}
85
+
86
+ 新输入: {input}
87
+ Thought: Do I need to use a tool? {agent_scratchpad}
88
+ """
89
+
90
  from visual_foundation_models import *
91
  from langchain.agents.initialize import initialize_agent
92
  from langchain.agents.tools import Tool
 
119
  if 'ImageCaptioning' not in load_dict:
120
  raise ValueError("You have to load ImageCaptioning as a basic function for VisualChatGPT")
121
 
122
+ self.models = {}
123
+ # Load Basic Foundation Models
124
  for class_name, device in load_dict.items():
125
  self.models[class_name] = globals()[class_name](device=device)
126
 
127
+ # Load Template Foundation Models
128
+ for class_name, module in globals().items():
129
+ if getattr(module, 'template_model', False):
130
+ template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if
131
+ k != 'self'}
132
+ loaded_names = set([type(e).__name__ for e in self.models.values()])
133
+ if template_required_names.issubset(loaded_names):
134
+ self.models[class_name] = globals()[class_name](
135
+ **{name: self.models[name] for name in template_required_names})
136
  self.tools = []
137
+ for instance in self.models.values():
138
  for e in dir(instance):
139
  if e.startswith('inference'):
140
  func = getattr(instance, e)
141
  self.tools.append(Tool(name=func.name, description=func.description, func=func))
142
+ self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
143
 
144
  def run_text(self, text, state):
145
  self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
146
+ res = self.agent({"input": text.strip()})
147
  res['output'] = res['output'].replace("\\", "/")
148
  response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
149
  state = state + [(text, response)]
 
173
  f"Current Memory: {self.agent.memory.buffer}")
174
  return state, state, f'{txt} {image_filename} '
175
 
176
+ def init_agent(self, openai_api_key, lang):
177
+ self.memory.clear()
178
+ if lang=='English':
179
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, VISUAL_CHATGPT_SUFFIX
180
+ place = "Enter text and press enter, or upload an image"
181
+ label_clear = "Clear"
182
+ else:
183
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX_CN, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN, VISUAL_CHATGPT_SUFFIX_CN
184
+ place = "输入文字并回车,或者上传图片"
185
+ label_clear = "清除"
186
  self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
187
  self.agent = initialize_agent(
188
  self.tools,
 
191
  verbose=True,
192
  memory=self.memory,
193
  return_intermediate_steps=True,
194
+ agent_kwargs={'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, 'suffix': SUFFIX}, )
195
 
196
  return gr.update(visible = True)
197
 
 
211
  gr.Markdown(
212
  """This is a demo to the work [Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models](https://github.com/microsoft/visual-chatgpt).<br>
213
  This space connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting.<br>
 
214
  """
215
  )
216
 
217
  with gr.Row():
218
+ lang = gr.Radio(choices=['Chinese', 'English'], value='English', label='Language')
219
  openai_api_key_textbox = gr.Textbox(
220
  placeholder="Paste your OpenAI API key here to start Visual ChatGPT(sk-...) and press Enter ↵️",
221
  show_label=False,
 
255
  <a href="https://huggingface.co/spaces/microsoft/visual_chatgpt?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
256
  </center>''')
257
 
258
+ openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox, lang], [input_raws])
 
 
259
  txt.submit(bot.run_text, [txt, state], [chatbot, state])
260
  txt.submit(lambda: "", None, txt)
261
  run.click(bot.run_text, [txt, state], [chatbot, state])
visual_foundation_models.py CHANGED
@@ -12,9 +12,12 @@ import random
12
  import torch
13
  import cv2
14
  import uuid
15
- from PIL import Image
16
  import numpy as np
17
  from pytorch_lightning import seed_everything
 
 
 
18
 
19
  def prompts(name, description):
20
  def decorator(func):
@@ -24,6 +27,62 @@ def prompts(name, description):
24
 
25
  return decorator
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  def get_new_image_name(org_img_name, func_name="update"):
28
  head_tail = os.path.split(org_img_name)
29
  head = head_tail[0]
@@ -540,7 +599,7 @@ class Image2Seg:
540
  segmentation = Image.fromarray(color_seg)
541
  updated_image_path = get_new_image_name(inputs, func_name="segmentation")
542
  segmentation.save(updated_image_path)
543
- print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
544
  return updated_image_path
545
 
546
 
@@ -732,4 +791,101 @@ class VisualQuestionAnswering:
732
  answer = self.processor.decode(out[0], skip_special_tokens=True)
733
  print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
734
  f"Output Answer: {answer}")
735
- return answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  import torch
13
  import cv2
14
  import uuid
15
+ from PIL import Image, ImageOps
16
  import numpy as np
17
  from pytorch_lightning import seed_everything
18
+ import math
19
+
20
+ from langchain.llms.openai import OpenAI
21
 
22
  def prompts(name, description):
23
  def decorator(func):
 
27
 
28
  return decorator
29
 
30
+ def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
31
+ new_size = new_image.size
32
+ old_size = old_image.size
33
+ easy_img = np.array(new_image)
34
+ gt_img_array = np.array(old_image)
35
+ pos_w = (new_size[0] - old_size[0]) // 2
36
+ pos_h = (new_size[1] - old_size[1]) // 2
37
+
38
+ kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
39
+ kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
40
+ kernel = np.multiply(kernel_h, np.transpose(kernel_w))
41
+
42
+ kernel[steps:-steps, steps:-steps] = 1
43
+ kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
44
+ kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
45
+ kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
46
+ kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
47
+ kernel = np.expand_dims(kernel, 2)
48
+ kernel = np.repeat(kernel, 3, 2)
49
+
50
+ weight = np.linspace(0, 1, steps)
51
+ top = np.expand_dims(weight, 1)
52
+ top = np.repeat(top, old_size[0] - 2 * steps, 1)
53
+ top = np.expand_dims(top, 2)
54
+ top = np.repeat(top, 3, 2)
55
+
56
+ weight = np.linspace(1, 0, steps)
57
+ down = np.expand_dims(weight, 1)
58
+ down = np.repeat(down, old_size[0] - 2 * steps, 1)
59
+ down = np.expand_dims(down, 2)
60
+ down = np.repeat(down, 3, 2)
61
+
62
+ weight = np.linspace(0, 1, steps)
63
+ left = np.expand_dims(weight, 0)
64
+ left = np.repeat(left, old_size[1] - 2 * steps, 0)
65
+ left = np.expand_dims(left, 2)
66
+ left = np.repeat(left, 3, 2)
67
+
68
+ weight = np.linspace(1, 0, steps)
69
+ right = np.expand_dims(weight, 0)
70
+ right = np.repeat(right, old_size[1] - 2 * steps, 0)
71
+ right = np.expand_dims(right, 2)
72
+ right = np.repeat(right, 3, 2)
73
+
74
+ kernel[:steps, steps:-steps] = top
75
+ kernel[-steps:, steps:-steps] = down
76
+ kernel[steps:-steps, :steps] = left
77
+ kernel[steps:-steps, -steps:] = right
78
+
79
+ pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
80
+ gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
81
+ gaussian_gt_img = gaussian_gt_img.astype(np.int64)
82
+ easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
83
+ gaussian_img = Image.fromarray(easy_img)
84
+ return gaussian_img
85
+
86
  def get_new_image_name(org_img_name, func_name="update"):
87
  head_tail = os.path.split(org_img_name)
88
  head = head_tail[0]
 
599
  segmentation = Image.fromarray(color_seg)
600
  updated_image_path = get_new_image_name(inputs, func_name="segmentation")
601
  segmentation.save(updated_image_path)
602
+ print(f"\nProcessed Image2Seg, Input Image: {inputs}, Output Pose: {updated_image_path}")
603
  return updated_image_path
604
 
605
 
 
791
  answer = self.processor.decode(out[0], skip_special_tokens=True)
792
  print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
793
  f"Output Answer: {answer}")
794
+ return answer
795
+
796
+ class InfinityOutPainting:
797
+ template_model = True # Add this line to show this is a template model.
798
+ def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering):
799
+ self.llm = OpenAI(temperature=0)
800
+ self.ImageCaption = ImageCaptioning
801
+ self.ImageEditing = ImageEditing
802
+ self.ImageVQA = VisualQuestionAnswering
803
+ self.a_prompt = 'best quality, extremely detailed'
804
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
805
+ 'fewer digits, cropped, worst quality, low quality'
806
+
807
+ def get_BLIP_vqa(self, image, question):
808
+ inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
809
+ self.ImageVQA.torch_dtype)
810
+ out = self.ImageVQA.model.generate(**inputs)
811
+ answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
812
+ print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
813
+ return answer
814
+
815
+ def get_BLIP_caption(self, image):
816
+ inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
817
+ self.ImageCaption.torch_dtype)
818
+ out = self.ImageCaption.model.generate(**inputs)
819
+ BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
820
+ return BLIP_caption
821
+
822
+ def check_prompt(self, prompt):
823
+ check = f"Here is a paragraph with adjectives. " \
824
+ f"{prompt} " \
825
+ f"Please change all plural forms in the adjectives to singular forms. "
826
+ return self.llm(check)
827
+
828
+ def get_imagine_caption(self, image, imagine):
829
+ BLIP_caption = self.get_BLIP_caption(image)
830
+ background_color = self.get_BLIP_vqa(image, 'what is the background color of this image')
831
+ style = self.get_BLIP_vqa(image, 'what is the style of this image')
832
+ imagine_prompt = f"let's pretend you are an excellent painter and now " \
833
+ f"there is an incomplete painting with {BLIP_caption} in the center, " \
834
+ f"please imagine the complete painting and describe it" \
835
+ f"you should consider the background color is {background_color}, the style is {style}" \
836
+ f"You should make the painting as vivid and realistic as possible" \
837
+ f"You can not use words like painting or picture" \
838
+ f"and you should use no more than 50 words to describe it"
839
+ caption = self.llm(imagine_prompt) if imagine else BLIP_caption
840
+ caption = self.check_prompt(caption)
841
+ print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print(
842
+ f'Prompt: {caption}')
843
+ return caption
844
+
845
+ def resize_image(self, image, max_size=1000000, multiple=8):
846
+ aspect_ratio = image.size[0] / image.size[1]
847
+ new_width = int(math.sqrt(max_size * aspect_ratio))
848
+ new_height = int(new_width / aspect_ratio)
849
+ new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
850
+ return image.resize((new_width, new_height))
851
+
852
+ def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
853
+ old_img = original_img
854
+ while (old_img.size != tosize):
855
+ prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
856
+ crop_w = 15 if old_img.size[0] != tosize[0] else 0
857
+ crop_h = 15 if old_img.size[1] != tosize[1] else 0
858
+ old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
859
+ temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
860
+ expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
861
+ 1])
862
+ temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
863
+ color="white")
864
+ x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
865
+ temp_canvas.paste(old_img, (x, y))
866
+ temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
867
+ resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
868
+ image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
869
+ height=resized_temp_canvas.height, width=resized_temp_canvas.width,
870
+ num_inference_steps=50).images[0].resize(
871
+ (temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
872
+ image = blend_gt2pt(old_img, image)
873
+ old_img = image
874
+ return old_img
875
+
876
+ @prompts(name="Extend An Image",
877
+ description="useful when you need to extend an image into a larger image."
878
+ "like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
879
+ "The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
880
+ def inference(self, inputs):
881
+ image_path, resolution = inputs.split(',')
882
+ width, height = resolution.split('x')
883
+ tosize = (int(width), int(height))
884
+ image = Image.open(image_path)
885
+ image = ImageOps.crop(image, (10, 10, 10, 10))
886
+ out_painted_image = self.dowhile(image, tosize, 4, True, False)
887
+ updated_image_path = get_new_image_name(image_path, func_name="outpainting")
888
+ out_painted_image.save(updated_image_path)
889
+ print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
890
+ f"Output Image: {updated_image_path}")
891
+ return updated_image_path