import os import diffusers.utils from diffusers import StableDiffusionPipeline from diffusers import StableDiffusionInpaintPipeline from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering from ldm.util import instantiate_from_config from ControlNet.cldm.model import create_model, load_state_dict from ControlNet.cldm.ddim_hacked import DDIMSampler # from ControlNet.annotator.canny import CannyDetector # from ControlNet.annotator.mlsd import MLSDdetector # from ControlNet.annotator.hed import HEDdetector, nms # from ControlNet.annotator.openpose import OpenposeDetector # from ControlNet.annotator.uniformer import UniformerDetector # from ControlNet.annotator.midas import MidasDetector from PIL import Image import torch import numpy as np import uuid import einops from pytorch_lightning import seed_everything import cv2 import random def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img def get_new_image_name(org_img_name, func_name="update"): head_tail = os.path.split(org_img_name) head = head_tail[0] tail = head_tail[1] name_split = tail.split('.')[0].split('_') this_new_uuid = str(uuid.uuid4())[0:4] if len(name_split) == 1: most_org_file_name = name_split[0] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) else: assert len(name_split) == 4 most_org_file_name = name_split[3] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) return os.path.join(head, new_file_name) class MaskFormer: def __init__(self, device): self.device = device self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) def inference(self, image_path, text): threshold = 0.5 min_area = 0.02 padding = 20 original_image = Image.open(image_path) image = original_image.resize((512, 512)) inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) if area_ratio < min_area: return None true_indices = np.argwhere(mask) mask_array = np.zeros_like(mask, dtype=bool) for idx in true_indices: padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) mask_array[padded_slice] = True visual_mask = (mask_array * 255).astype(np.uint8) image_mask = Image.fromarray(visual_mask) return image_mask.resize(image.size) class ImageEditing: def __init__(self, device): print("Initializing StableDiffusionInpaint to %s" % device) self.device = device self.mask_former = MaskFormer(device=self.device) self.inpainting = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",).to(device) def remove_part_of_image(self, input): image_path, to_be_removed_txt = input.split(",") print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}') return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background") def replace_part_of_image(self, input): image_path, to_be_replaced_txt, replace_with_txt = input.split(",") print(f'replace_part_of_image: replace_with_txt {replace_with_txt}') original_image = Image.open(image_path) mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0] updated_image_path = get_new_image_name(image_path, func_name="replace-something") updated_image.save(updated_image_path) return updated_image_path class Pix2Pix: def __init__(self, device): print("Initializing Pix2Pix to %s" % device) self.device = device self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device) self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) def inference(self, inputs): """Change style of image.""" print("===>Starting Pix2Pix Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) original_image = Image.open(image_path) image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0] updated_image_path = get_new_image_name(image_path, func_name="pix2pix") image.save(updated_image_path) return updated_image_path class T2I: def __init__(self, device): print("Initializing T2I to %s" % device) self.device = device self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion") self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device) self.pipe.to(device) def inference(self, text): image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png") refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"] print(f'{text} refined to {refined_text}') image = self.pipe(refined_text).images[0] image.save(image_filename) print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): print("Initializing ImageCaptioning to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device) def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) return captions class image2canny_new: def __init__(self): print("Direct detect canny.") self.low_threshold = 100 self.high_threshold = 200 def inference(self, inputs): print("===>Starting image2canny Inference") image = Image.open(inputs) image = np.array(image) canny = cv2.Canny(image, self.low_threshold, self.high_threshold) canny = canny[:, :, None] canny = np.concatenate([canny, canny, canny], axis=2) canny = 255 - canny canny = Image.fromarray(canny) updated_image_path = get_new_image_name(inputs, func_name="edge") canny.save(updated_image_path) return updated_image_path class canny2image_new: def __init__(self, device): self.controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-canny" ) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None ) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.image_resolution = 512 self.num_inference_steps = 20 self.seed = -1 self.unconditional_guidance_scale = 9.0 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting canny2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) img = Image.fromarray(img) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = prompt + ', ' + self.a_prompt image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0] updated_image_path = get_new_image_name(image_path, func_name="canny2image") image.save(updated_image_path) return updated_image_path # class image2canny: # def __init__(self): # print("Direct detect canny.") # self.detector = CannyDetector() # self.low_thresh = 100 # self.high_thresh = 200 # # def inference(self, inputs): # print("===>Starting image2canny Inference") # image = Image.open(inputs) # image = np.array(image) # canny = self.detector(image, self.low_thresh, self.high_thresh) # canny = 255 - canny # image = Image.fromarray(canny) # updated_image_path = get_new_image_name(inputs, func_name="edge") # image.save(updated_image_path) # return updated_image_path # # class canny2image: # def __init__(self, device): # print("Initialize the canny2image model.") # model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) # model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu')) # self.model = model.to(device) # self.device = device # self.ddim_sampler = DDIMSampler(self.model) # self.ddim_steps = 20 # self.image_resolution = 512 # self.num_samples = 1 # self.save_memory = False # self.strength = 1.0 # self.guess_mode = False # self.scale = 9.0 # self.seed = -1 # self.a_prompt = 'best quality, extremely detailed' # self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' # # def inference(self, inputs): # print("===>Starting canny2image Inference") # image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) # image = Image.open(image_path) # image = np.array(image) # image = 255 - image # prompt = instruct_text # img = resize_image(HWC3(image), self.image_resolution) # H, W, C = img.shape # control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 # control = torch.stack([control for _ in range(self.num_samples)], dim=0) # control = einops.rearrange(control, 'b h w c -> b c h w').clone() # self.seed = random.randint(0, 65535) # seed_everything(self.seed) # if self.save_memory: # self.model.low_vram_shift(is_diffusing=False) # cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} # un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} # shape = (4, H // 8, W // 8) # self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 # samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) # if self.save_memory: # self.model.low_vram_shift(is_diffusing=False) # x_samples = self.model.decode_first_stage(samples) # x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) # updated_image_path = get_new_image_name(image_path, func_name="canny2image") # real_image = Image.fromarray(x_samples[0]) # get default the index0 image # real_image.save(updated_image_path) # return updated_image_path class image2line_new: def __init__(self): self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') self.value_thresh = 0.1 self.dis_thresh = 0.1 self.resolution = 512 def inference(self, inputs): print("===>Starting image2line Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) mlsd = self.detector(resize_image(image, self.resolution), thr_v=self.value_thresh, thr_d=self.dis_thresh) mlsd = np.array(mlsd) mlsd = 255 - mlsd mlsd = Image.fromarray(mlsd) updated_image_path = get_new_image_name(inputs, func_name="line-of") mlsd.save(updated_image_path) return updated_image_path class line2image_new: def __init__(self, device): print("Initialize the line2image model...") self.controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-mlsd" ) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None ) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.image_resolution = 512 self.num_inference_steps = 20 self.seed = -1 self.unconditional_guidance_scale = 9.0 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting line2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) img = Image.fromarray(img) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = prompt + ', ' + self.a_prompt image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0] updated_image_path = get_new_image_name(image_path, func_name="line2image") image.save(updated_image_path) return updated_image_path class image2line: def __init__(self): print("Direct detect straight line...") self.detector = MLSDdetector() self.value_thresh = 0.1 self.dis_thresh = 0.1 self.resolution = 512 def inference(self, inputs): print("===>Starting image2hough Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh) updated_image_path = get_new_image_name(inputs, func_name="line-of") hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1) image = Image.fromarray(hough) image.save(updated_image_path) return updated_image_path class line2image: def __init__(self, device): print("Initialize the line2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting line2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) image = 255 - image prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\ cpu().numpy().clip(0,255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="line2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2hed: def __init__(self): print("Direct detect soft HED boundary...") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2hed Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) hed = self.detector(resize_image(image, self.resolution)) updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") image = Image.fromarray(hed) image.save(updated_image_path) return updated_image_path class hed2image: def __init__(self, device): print("Initialize the hed2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting hed2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="hed2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2scribble: def __init__(self): print("Direct detect scribble.") self.detector = HEDdetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2scribble Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) detected_map = nms(detected_map, 127, 3.0) detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) detected_map[detected_map > 4] = 255 detected_map[detected_map < 255] = 0 detected_map = 255 - detected_map updated_image_path = get_new_image_name(inputs, func_name="scribble") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class scribble2image: def __init__(self, device): print("Initialize the scribble2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting scribble2image Inference") print(f'sketch device {self.device}') image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text image = 255 - image img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="scribble2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2pose: def __init__(self): print("Direct human pose.") self.detector = OpenposeDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2pose Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="human-pose") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class pose2image: def __init__(self, device): print("Initialize the pose2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting pose2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="pose2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2seg: def __init__(self): print("Direct segmentations.") self.detector = UniformerDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2seg Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="segmentation") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class seg2image: def __init__(self, device): print("Initialize the seg2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting seg2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="segment2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2depth: def __init__(self): print("Direct depth estimation.") self.detector = MidasDetector() self.resolution = 512 def inference(self, inputs): print("===>Starting image2depth Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) detected_map, _ = self.detector(resize_image(image, self.resolution)) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="depth") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class depth2image: def __init__(self, device): print("Initialize depth2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting depth2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = resize_image(HWC3(image), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01 samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="depth2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class image2normal: def __init__(self): print("Direct normal estimation.") self.detector = MidasDetector() self.resolution = 512 self.bg_threshold = 0.4 def inference(self, inputs): print("===>Starting image2 normal Inference") image = Image.open(inputs) image = np.array(image) image = HWC3(image) _, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold) detected_map = HWC3(detected_map) image = resize_image(image, self.resolution) H, W, C = image.shape detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) updated_image_path = get_new_image_name(inputs, func_name="normal-map") image = Image.fromarray(detected_map) image.save(updated_image_path) return updated_image_path class normal2image: def __init__(self, device): print("Initialize normal2image model...") model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device) model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu')) self.model = model.to(device) self.device = device self.ddim_sampler = DDIMSampler(self.model) self.ddim_steps = 20 self.image_resolution = 512 self.num_samples = 1 self.save_memory = False self.strength = 1.0 self.guess_mode = False self.scale = 9.0 self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' def inference(self, inputs): print("===>Starting normal2image Inference") image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) image = np.array(image) prompt = instruct_text img = image[:, :, ::-1].copy() img = resize_image(HWC3(img), self.image_resolution) H, W, C = img.shape img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST) control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0 control = torch.stack([control for _ in range(self.num_samples)], dim=0) control = einops.rearrange(control, 'b h w c -> b c h w').clone() self.seed = random.randint(0, 65535) seed_everything(self.seed) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]} un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]} shape = (4, H // 8, W // 8) self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond) if self.save_memory: self.model.low_vram_shift(is_diffusing=False) x_samples = self.model.decode_first_stage(samples) x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) updated_image_path = get_new_image_name(image_path, func_name="normal2image") real_image = Image.fromarray(x_samples[0]) # default the index0 image real_image.save(updated_image_path) return updated_image_path class BLIPVQA: def __init__(self, device): print("Initializing BLIP VQA to %s" % device) self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device) def get_answer_from_question_and_image(self, inputs): image_path, question = inputs.split(",") raw_image = Image.open(image_path).convert('RGB') print(F'BLIPVQA :question :{question}') inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device) out = self.model.generate(**inputs) answer = self.processor.decode(out[0], skip_special_tokens=True) return answer