from datasets import load_dataset from dataclasses import dataclass from typing import Any, Dict, List, Optional import random import matplotlib.pyplot as plt from score import calculate_gpt4o_scores, BENCHMARK_SCORES # Define benchmarks BENCHMARKS = { "icelandic-wiki-qa": { "name": "Íslensk saga og menning", "path": "mideind/icelandic_wiki_qa", "type": "free_text", "white_listed_questions": [ "Hver er talinn hafa átt Snorralaug?", "Í hvaða bandaríska háskóla var bókasafnið sem Halldór Hermannsson var bókavörður við?", "Hvaða íslenska barnabók hlaut Íslensku bókmenntaverðlaunin árið 1999?", "Hvenær hefst kirkjuárið í íslensku þjóðkirkjunni?", "Hvað táknaði broddur yfir sérhljóði upphaflega í íslenskum handritum?", "Hvaða ferskeytlu í íslenskum kveðskap er hægt að lesa bæði aftur á bak og áfram án þess að raska bragforminu?", "Hver nefndi Ísland?", "Fyrir hvaða kvikmynd var íslenska dægurlagið „Vegir liggja til allra átta” samið?", "Í hvaða firði er Flugumýri?", "Hver samdi Íslendinga sögu?", ], }, "icelandic-winogrande": { "name": "Almenn heimsþekking og ályktunarhæfni", "path": "mideind/icelandic-winogrande", "type": "multiple_choice", }, "grammatical-error-detection": { "name": "Málfræðivillur", "path": "mideind/icelandic-sentences-gec", "type": "multiple_choice", }, "icelandic-inflection-all": { "name": "Fallbeygingar", "path": "mideind/icelandic-inflection-all-flat", "type": "free_text", "blacklisted_noun_phrases": [ "hágæða sprengjutilræði", "óstöðvandi geðröskun", "allsber meirihluti", "geðsjúkt álagsstýrikerfi", "kynþokkafullt starfsvið", "lettneskur þræll", "nígerískt meyjarhaft", "kynæsandi málvísindamaður", "kynþokkafullur menntaskólakennari", "lóðrétt forhúð", "vandþrædd hvatabuska", ], }, "icelandic-belebele": { "name": "Lesskilningur", "path": "facebook/belebele", "config_name": "isl_Latn", "split": "test", "type": "multiple_choice", }, "icelandic-arc-challenge": { "name": "Vísindi", "path": "mideind/icelandic-arc-challenge", "type": "multiple_choice", }, } DATASETS = { dataset_name: load_dataset( BENCHMARKS[dataset_name]["path"], name=BENCHMARKS[dataset_name].get("config_name"), split=BENCHMARKS[dataset_name].get("split", "train"), ) for dataset_name in BENCHMARKS } # Dataset specific preprocessing and standardization def winogrande_preprocessing(sample): new_sample = {} new_sample["question"] = ( "Lestu eftirfarandi málsgrein:
{sentence}
{sample['sentence']}
" ) new_sample["options"] = "Villa", "Engin villa" new_sample["answer"] = "Villa" if sample["correct"] == "false" else "Engin villa" new_sample["instruction"] = "Valkostir" return new_sample def inflection_all_preprocessing(sample): new_sample = {} case_map = { "nf": "nefnifalli", "þf": "þolfalli", "þgf": "þágufalli", "ef": "eignarfalli", } plurality_map = {"et": "eintölu", "ft": "fleirtölu"} new_sample["question"] = ( f"Hvernig beygist „{sample['noun_phrase']}“ í {case_map[sample['case']]} {plurality_map[sample['plurality']]}?" ) new_sample["answer"] = sample["inflection"] new_sample["instruction"] = "Skrifaðu réttu beyginguna." return new_sample def belebele_preprocessing(sample): new_sample = {} new_sample["question"] = ( f'Lestu eftirfarandi texta:{sample["flores_passage"]}
\n\n{sample["question"]}' ) new_sample["options"] = [ sample["mc_answer1"], sample["mc_answer2"], sample["mc_answer3"], sample["mc_answer4"], ] correct_idx = int(sample["correct_answer_num"]) - 1 new_sample["answer"] = new_sample["options"][correct_idx] new_sample["instruction"] = "Veldu réttasta svarið." return new_sample def arc_challenge_preprocessing(sample): new_sample = {} new_sample["question"] = sample["question"] new_sample["options"] = sample["choices"]["text"] correct_idx = sample["choices"]["label"].index(sample["answerKey"]) new_sample["answer"] = sample["choices"]["text"][correct_idx] new_sample["instruction"] = "Veldu réttasta svarið." return new_sample def wikipedia_preprocessing(sample): new_sample = {} new_sample["question"] = sample["query"] new_sample["answer"] = sample["answer"] new_sample["instruction"] = "Skrifaðu svarið þitt að neðan." return new_sample @dataclass class QuizState: benchmark_name: str samples: List[Dict[str, Any]] current_question: int user_answers: List[Optional[str]] correct_answers: List[str] quiz_completed: bool user_scores: List[Optional[float]] @dataclass class QuestionData: question_num: str question: str options: Optional[List[str]] answer: Optional[str] next_button_text: str previous_button_visibility: bool instruction: str = "" class BenchmarkQuiz: def __init__(self): self.state = None def start_quiz(self, benchmark_name: str) -> QuizState: samples = self.load_benchmark(benchmark_name) correct_answers = [sample["answer"] for sample in samples] self.state = QuizState( benchmark_name=benchmark_name, samples=samples, current_question=0, user_answers=[None] * len(samples), correct_answers=correct_answers, quiz_completed=False, user_scores=[None] * len(samples), ) return self.state def load_benchmark(self, benchmark_name: str) -> List[Dict[str, Any]]: dataset = DATASETS[benchmark_name] if benchmark_name == "icelandic-wiki-qa": filtered_samples = [ sample for sample in dataset if sample["query"] in BENCHMARKS[benchmark_name]["white_listed_questions"] ] samples = random.sample(filtered_samples, 5) else: random_indices = random.sample(range(len(dataset)), 5) samples = dataset.select(random_indices) if benchmark_name == "icelandic-winogrande": samples = [winogrande_preprocessing(sample) for sample in samples] elif benchmark_name == "grammatical-error-detection": samples = [ icelandic_sentence_gec_preprocessing(sample) for sample in samples ] elif benchmark_name == "icelandic-inflection-all": while any( sample["noun_phrase"] in BENCHMARKS[benchmark_name]["blacklisted_noun_phrases"] for sample in samples ): random_indices = random.sample(range(len(dataset)), 5) samples = dataset.select(random_indices) samples = [inflection_all_preprocessing(sample) for sample in samples] elif benchmark_name == "icelandic-belebele": samples = [belebele_preprocessing(sample) for sample in samples] elif benchmark_name == "icelandic-arc-challenge": samples = [arc_challenge_preprocessing(sample) for sample in samples] elif benchmark_name == "icelandic-wiki-qa": samples = [wikipedia_preprocessing(sample) for sample in samples] return samples def update_question(self) -> QuestionData: """ Update the question data based on the current state. Is called when the user navigates to a new question. """ current_question = self.state.current_question sample = self.state.samples[current_question] question_num = ( f"### Spurning {current_question + 1} af {len(self.state.samples)}" ) question = sample["question"] options = sample.get("options") answer = self.state.user_answers[current_question] next_button_text = ( "Klára" if current_question == len(self.state.samples) - 1 else "Næsta" ) previous_button_visibility = current_question > 0 instruction = sample.get("instruction", "") return QuestionData( question_num=question_num, question=question, options=options, answer=answer, next_button_text=next_button_text, previous_button_visibility=previous_button_visibility, instruction=instruction, ) def next_question(self, answer: str) -> Dict[str, Any]: """ Update the state with the user's answer to the current question. If the quiz is not completed, return the next question data. If the quiz is completed, return the score plot. Is called when the user submits an answer. """ self.state.user_answers[self.state.current_question] = answer if self.state.current_question < len(self.state.samples) - 1: self.state.current_question += 1 return {"completed": False, "question_data": self.update_question()} else: self.state.quiz_completed = True user_scores = self.calculate_scores() self.state.user_scores = user_scores plot = self.plot_score(user_scores) return { "completed": True, "plot": plot, "results_data": self.get_results_data(), } def previous_question(self) -> QuestionData: if self.state.current_question > 0: self.state.current_question -= 1 return self.update_question() def calculate_scores(self) -> list[float]: if self.state.benchmark_name == "icelandic-wiki-qa": queries = [sample["question"] for sample in self.state.samples] return calculate_gpt4o_scores( queries, self.state.user_answers, self.state.correct_answers ) scores = [ float(user_answer == correct_answer) for user_answer, correct_answer in zip( self.state.user_answers, self.state.correct_answers ) ] return scores def plot_score(self, user_scores: List[float]): user_score = sum(user_scores) / len(user_scores) scores = {**BENCHMARK_SCORES[self.state.benchmark_name], "Þú": 100 * user_score} # Sort by score scores = dict(sorted(scores.items(), key=lambda item: item[1])) # Define colors for user vs models colors = {name: "tab:blue" for name in scores.keys()} colors["Þú"] = "tab:green" fig, ax = plt.subplots(figsize=(10, 6), dpi=250) ax.spines[["left", "top", "right"]].set_visible(False) ax.barh( scores.keys(), scores.values(), height=0.6, color=[colors[name] for name in scores.keys()], ) ax.set_axisbelow(True) ax.xaxis.grid(True, linestyle="--", alpha=0.6) ax.set_title( f"{BENCHMARKS[self.state.benchmark_name]['name']}: Svona stóðstu þig miðað við mállíkönin", pad=20, ) ax.set_xlabel("Stig (%)") ax.set_xlim(0, 100) plt.tight_layout() return fig def get_results_data(self) -> List[Dict[str, Any]]: return [ { "question_num": i + 1, "question": sample["question"], "user_answer": user_answer, "correct_answer": correct_answer, "options": sample.get("options"), "instruction": sample.get("instruction", ""), "points": score, } for i, (sample, user_answer, correct_answer, score) in enumerate( zip( self.state.samples, self.state.user_answers, self.state.correct_answers, self.state.user_scores, ) ) ]