Spaces:
Sleeping
Sleeping
File size: 1,803 Bytes
4b75840 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers_interpret import SequenceClassificationExplainer
import torch
import pandas as pd
class SentimentAnalysis():
def __init__(self):
# Load Tokenizer & Model
hub_location = 'cardiffnlp/twitter-roberta-base-sentiment'
self.tokenizer = AutoTokenizer.from_pretrained(hub_location)
self.model = AutoModelForSequenceClassification.from_pretrained(hub_location)
# Change model labels in config
self.model.config.id2label[0] = "Negative"
self.model.config.id2label[1] = "Neutral"
self.model.config.id2label[2] = "Positive"
self.model.config.label2id["Negative"] = self.model.config.label2id.pop("LABEL_0")
self.model.config.label2id["Neutral"] = self.model.config.label2id.pop("LABEL_1")
self.model.config.label2id["Positive"] = self.model.config.label2id.pop("LABEL_2")
# Instantiate explainer
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer)
def justify(self, text):
""""""
word_attributions = self.explainer(text)
html = self.explainer.visualize("example.html")
return html
def classify(self, text):
""""""
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt')
outputs = self.model(**tokens)
probs = torch.nn.functional.softmax(outputs[0], dim=-1)
probs = probs.mean(dim=0).detach().numpy()
preds = pd.Series(probs, index=["Negative", "Neutral", "Positive"], name='Predicted Probability')
return preds
def run(self, text):
""""""
preds = self.classify(text)
html = self.justify(text)
return preds, html |