Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers_interpret import SequenceClassificationExplainer | |
import torch | |
import pandas as pd | |
class EmotionDetection: | |
""" This class is an example | |
Attributes: | |
class_attribute (str): (class attribute) The class attribute | |
instance_attribute (str): The instance attribute | |
""" | |
def __init__(self): | |
hub_location = 'cardiffnlp/twitter-roberta-base-emotion' | |
self.tokenizer = AutoTokenizer.from_pretrained(hub_location) | |
self.model = AutoModelForSequenceClassification.from_pretrained(hub_location) | |
self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer) | |
def justify(self, text): | |
""" | |
The function to add two Complex Numbers. | |
Parameters: | |
num (ComplexNumber): The complex number to be added. | |
Returns: | |
ComplexNumber: A complex number which contains the sum. | |
""" | |
word_attributions = self.explainer(text) | |
html = self.explainer.visualize("example.html") | |
return html | |
def classify(self, text): | |
""" | |
The function to add two Complex Numbers. | |
Parameters: | |
num (ComplexNumber): The complex number to be added. | |
Returns: | |
ComplexNumber: A complex number which contains the sum. | |
""" | |
tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt') | |
outputs = self.model(**tokens) | |
probs = torch.nn.functional.softmax(outputs[0], dim=-1) | |
probs = probs.mean(dim=0).detach().numpy() | |
labels = list(self.model.config.id2label.values()) | |
preds = pd.Series(probs, index=labels, name='Predicted Probability') | |
return preds | |
def run(self, text): | |
""" | |
The function to add two Complex Numbers. | |
Parameters: | |
num (ComplexNumber): The complex number to be added. | |
Returns: | |
ComplexNumber: A complex number which contains the sum. | |
""" | |
preds = self.classify(text) | |
html = self.justify(text) | |
return preds, html |