from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers_interpret import SequenceClassificationExplainer import torch import pandas as pd class EmotionDetection: """ This class is an example Attributes: class_attribute (str): (class attribute) The class attribute instance_attribute (str): The instance attribute """ def __init__(self): hub_location = 'cardiffnlp/twitter-roberta-base-emotion' self.tokenizer = AutoTokenizer.from_pretrained(hub_location) self.model = AutoModelForSequenceClassification.from_pretrained(hub_location) self.explainer = SequenceClassificationExplainer(self.model, self.tokenizer) def justify(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ word_attributions = self.explainer(text) html = self.explainer.visualize("example.html") return html def classify(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ tokens = self.tokenizer.encode_plus(text, add_special_tokens=False, return_tensors='pt') outputs = self.model(**tokens) probs = torch.nn.functional.softmax(outputs[0], dim=-1) probs = probs.mean(dim=0).detach().numpy() labels = list(self.model.config.id2label.values()) preds = pd.Series(probs, index=labels, name='Predicted Probability') return preds def run(self, text): """ The function to add two Complex Numbers. Parameters: num (ComplexNumber): The complex number to be added. Returns: ComplexNumber: A complex number which contains the sum. """ preds = self.classify(text) html = self.justify(text) return preds, html