File size: 19,520 Bytes
4fca798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import sys
sys.path.append('./')

from typing import Tuple

import os
import cv2
import math
import torch
import random
import numpy as np
import argparse

import PIL
from PIL import Image

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler

from huggingface_hub import hf_hub_download

import insightface
from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc

import gradio as gr

# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"

# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)

def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):

    if pretrained_model_name_or_path.endswith(
            ".ckpt"
        ) or pretrained_model_name_or_path.endswith(".safetensors"):
            scheduler_kwargs = hf_hub_download(
                repo_id="wangqixun/YamerMIX_v8",
                subfolder="scheduler",
                filename="scheduler_config.json",
            )

            (tokenizers, text_encoders, unet, _, vae) = load_models_xl(
                pretrained_model_name_or_path=pretrained_model_name_or_path,
                scheduler_name=None,
                weight_dtype=dtype,
            )

            scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
            pipe = StableDiffusionXLInstantIDPipeline(
                vae=vae,
                text_encoder=text_encoders[0],
                text_encoder_2=text_encoders[1],
                tokenizer=tokenizers[0],
                tokenizer_2=tokenizers[1],
                unet=unet,
                scheduler=scheduler,
                controlnet=controlnet,
            ).to(device)

    else:
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=controlnet,
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)

    pipe.load_ip_adapter_instantid(face_adapter)
    # load and disable LCM
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.disable_lora()
    def toggle_lcm_ui(value):
        if value:
            return (
                gr.update(minimum=0, maximum=100, step=1, value=5),
                gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5)
            )
        else:
            return (
                gr.update(minimum=5, maximum=100, step=1, value=30),
                gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5)
            )
    
    def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
        return seed
    
    def remove_tips():
        return gr.update(visible=False)

    def get_example():
        case = [
            [
                './examples/yann-lecun_resize.jpg',
                "a man",
                "Snow",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/musk_resize.jpeg',
                "a man",
                "Mars",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/sam_resize.png',
                "a man",
                "Jungle",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
            ],
            [
                './examples/schmidhuber_resize.png',
                "a man",
                "Neon",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
            [
                './examples/kaifu_resize.png',
                "a man",
                "Vibrant Color",
                "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
            ],
        ]
        return case

    def run_for_examples(face_file, prompt, style, negative_prompt):
        return generate_image(face_file, None, prompt, negative_prompt, style, 30, 0.8, 0.8, 5, 42, False, True)

    def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

    def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
        stickwidth = 4
        limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
        kps = np.array(kps)

        w, h = image_pil.size
        out_img = np.zeros([h, w, 3])

        for i in range(len(limbSeq)):
            index = limbSeq[i]
            color = color_list[index[0]]

            x = kps[index][:, 0]
            y = kps[index][:, 1]
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
            polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
        out_img = (out_img * 0.6).astype(np.uint8)

        for idx_kp, kp in enumerate(kps):
            color = color_list[idx_kp]
            x, y = kp
            out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

        out_img_pil = Image.fromarray(out_img.astype(np.uint8))
        return out_img_pil

    def resize_img(input_image, max_side=1280, min_side=1024, size=None, 
                pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64):

            w, h = input_image.size
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio*w), round(ratio*h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
                input_image = Image.fromarray(res)
            return input_image

    def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
        return p.replace("{prompt}", positive), n + ' ' + negative

    def generate_image(face_image_path, pose_image_path, prompt, negative_prompt, style_name, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region, progress=gr.Progress(track_tqdm=True)):
        if enable_LCM:
            pipe.enable_lora()
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        else:
            pipe.disable_lora()
            pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    
        if face_image_path is None:
            raise gr.Error(f"Cannot find any input face image! Please upload the face image")
        
        if prompt is None:
            prompt = "a person"
        
        # apply the style template
        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
        
        face_image = load_image(face_image_path)
        face_image = resize_img(face_image)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape
        
        # Extract face features
        face_info = app.get(face_image_cv2)
        
        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
        
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
        
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image)
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)
            
            face_info = app.get(pose_image_cv2)
            
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
            
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
            
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info["bbox"]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
                        
        generator = torch.Generator(device=device).manual_seed(seed)
        
        print("Start inference...")
        print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
        
        pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=float(identitynet_strength_ratio),
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator
        ).images

        return images[0], gr.update(visible=True)

    ### Description
    title = r"""
    <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
    """

    description = r"""
    <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>

    How to use:<br>
    1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
    2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
    3. Enter a text prompt, as done in normal text-to-image models.
    4. Click the <b>Submit</b> button to begin customization.
    5. Share your customized photo with your friends and enjoy! 😊
    """

    article = r"""
    ---
    📝 **Citation**
    <br>
    If our work is helpful for your research or applications, please cite us via:
    ```bibtex
    @article{wang2024instantid,
    title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
    author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
    journal={arXiv preprint arXiv:2401.07519},
    year={2024}
    }
    ```
    📧 **Contact**
    <br>
    If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
    """

    tips = r"""
    ### Usage tips of InstantID
    1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength."    
    2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength.
    3. If you find that text control is not as expected, decrease Adapter strength.
    4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model.
    """

    css = '''
    .gradio-container {width: 85% !important}
    '''
    with gr.Blocks(css=css) as demo:

        # description
        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Row():
            with gr.Column():
                
                # upload face image
                face_file = gr.Image(label="Upload a photo of your face", type="filepath")

                # optional: upload a reference pose image
                pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
           
                # prompt
                prompt = gr.Textbox(label="Prompt",
                        info="Give simple prompt is enough to achieve good face fidelity",
                        placeholder="A photo of a person",
                        value="")
                
                submit = gr.Button("Submit", variant="primary")
                
                enable_LCM = gr.Checkbox(
                    label="Enable Fast Inference with LCM", value=enable_lcm_arg,
                    info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces",
                )
                style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
                
                # strength
                identitynet_strength_ratio = gr.Slider(
                    label="IdentityNet strength (for fidelity)",
                    minimum=0,
                    maximum=1.5,
                    step=0.05,
                    value=0.80,
                )
                adapter_strength_ratio = gr.Slider(
                    label="Image adapter strength (for detail)",
                    minimum=0,
                    maximum=1.5,
                    step=0.05,
                    value=0.80,
                )
                
                with gr.Accordion(open=False, label="Advanced Options"):
                    negative_prompt = gr.Textbox(
                        label="Negative Prompt", 
                        placeholder="low quality",
                        value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
                    )
                    num_steps = gr.Slider( 
                        label="Number of sample steps",
                        minimum=20,
                        maximum=100,
                        step=1,
                        value=5 if enable_lcm_arg else 30,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1,
                        value=0 if enable_lcm_arg else 5,
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                    enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)

            with gr.Column():
                gallery = gr.Image(label="Generated Images")
                usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)

            submit.click(
                fn=remove_tips,
                outputs=usage_tips,            
            ).then(
                fn=randomize_seed_fn,
                inputs=[seed, randomize_seed],
                outputs=seed,
                queue=False,
                api_name=False,
            ).then(
                fn=generate_image,
                inputs=[face_file, pose_file, prompt, negative_prompt, style, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region],
                outputs=[gallery, usage_tips]
            )
        
            enable_LCM.input(fn=toggle_lcm_ui, inputs=[enable_LCM], outputs=[num_steps, guidance_scale], queue=False)

        gr.Examples(
            examples=get_example(),
            inputs=[face_file, prompt, style, negative_prompt],
            run_on_click=True,
            fn=run_for_examples,
            outputs=[gallery, usage_tips],
            cache_examples=True,
        )
        
        gr.Markdown(article)

    demo.launch()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
    parser.add_argument("--enable_LCM", type=bool, default=os.environ.get("ENABLE_LCM", False))

    args = parser.parse_args()

    main(args.pretrained_model_name_or_path, args.enable_LCM)