import sys sys.path.append('./') from typing import Tuple import os import cv2 import math import torch import random import numpy as np import argparse import PIL from PIL import Image import diffusers from diffusers.utils import load_image from diffusers.models import ControlNetModel from diffusers import LCMScheduler from huggingface_hub import hf_hub_download import insightface from insightface.app import FaceAnalysis from style_template import styles from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline from model_util import load_models_xl, get_torch_device, torch_gc import gradio as gr # global variable MAX_SEED = np.iinfo(np.int32).max device = get_torch_device() dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 STYLE_NAMES = list(styles.keys()) DEFAULT_STYLE_NAME = "Watercolor" # Load face encoder app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) app.prepare(ctx_id=0, det_size=(640, 640)) # Path to InstantID models face_adapter = f'./checkpoints/ip-adapter.bin' controlnet_path = f'./checkpoints/ControlNetModel' # Load pipeline controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype) def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False): if pretrained_model_name_or_path.endswith( ".ckpt" ) or pretrained_model_name_or_path.endswith(".safetensors"): scheduler_kwargs = hf_hub_download( repo_id="wangqixun/YamerMIX_v8", subfolder="scheduler", filename="scheduler_config.json", ) (tokenizers, text_encoders, unet, _, vae) = load_models_xl( pretrained_model_name_or_path=pretrained_model_name_or_path, scheduler_name=None, weight_dtype=dtype, ) scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs) pipe = StableDiffusionXLInstantIDPipeline( vae=vae, text_encoder=text_encoders[0], text_encoder_2=text_encoders[1], tokenizer=tokenizers[0], tokenizer_2=tokenizers[1], unet=unet, scheduler=scheduler, controlnet=controlnet, ).to(device) else: pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( pretrained_model_name_or_path, controlnet=controlnet, torch_dtype=dtype, safety_checker=None, feature_extractor=None, ).to(device) pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.load_ip_adapter_instantid(face_adapter) # load and disable LCM pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") pipe.disable_lora() def toggle_lcm_ui(value): if value: return ( gr.update(minimum=0, maximum=100, step=1, value=5), gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5) ) else: return ( gr.update(minimum=5, maximum=100, step=1, value=30), gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5) ) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def remove_tips(): return gr.update(visible=False) def get_example(): case = [ [ './examples/yann-lecun_resize.jpg', "a man", "Snow", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ './examples/musk_resize.jpeg', "a man", "Mars", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ './examples/sam_resize.png', "a man", "Jungle", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", ], [ './examples/schmidhuber_resize.png', "a man", "Neon", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], [ './examples/kaifu_resize.png', "a man", "Vibrant Color", "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", ], ] return case def run_for_examples(face_file, prompt, style, negative_prompt): return generate_image(face_file, None, prompt, negative_prompt, style, 30, 0.8, 0.8, 5, 42, False, True) def convert_from_cv2_to_image(img: np.ndarray) -> Image: return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) def convert_from_image_to_cv2(img: Image) -> np.ndarray: return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def resize_img(input_image, max_side=1280, min_side=1024, size=None, pad_to_max_side=False, mode=PIL.Image.BILINEAR, base_pixel_number=64): w, h = input_image.size if size is not None: w_resize_new, h_resize_new = size else: ratio = min_side / min(h, w) w, h = round(ratio*w), round(ratio*h) ratio = max_side / max(h, w) input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) return p.replace("{prompt}", positive), n + ' ' + negative def generate_image(face_image_path, pose_image_path, prompt, negative_prompt, style_name, num_steps, identitynet_strength_ratio, adapter_strength_ratio, guidance_scale, seed, enable_LCM, enhance_face_region, progress=gr.Progress(track_tqdm=True)): if enable_LCM: pipe.enable_lora() pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) else: pipe.disable_lora() pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config) if face_image_path is None: raise gr.Error(f"Cannot find any input face image! Please upload the face image") if prompt is None: prompt = "a person" # apply the style template prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) face_image = load_image(face_image_path) face_image = resize_img(face_image) face_image_cv2 = convert_from_image_to_cv2(face_image) height, width, _ = face_image_cv2.shape # Extract face features face_info = app.get(face_image_cv2) if len(face_info) == 0: raise gr.Error(f"Cannot find any face in the image! Please upload another person image") face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face face_emb = face_info['embedding'] face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps']) if pose_image_path is not None: pose_image = load_image(pose_image_path) pose_image = resize_img(pose_image) pose_image_cv2 = convert_from_image_to_cv2(pose_image) face_info = app.get(pose_image_cv2) if len(face_info) == 0: raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image") face_info = face_info[-1] face_kps = draw_kps(pose_image, face_info['kps']) width, height = face_kps.size if enhance_face_region: control_mask = np.zeros([height, width, 3]) x1, y1, x2, y2 = face_info["bbox"] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) control_mask[y1:y2, x1:x2] = 255 control_mask = Image.fromarray(control_mask.astype(np.uint8)) else: control_mask = None generator = torch.Generator(device=device).manual_seed(seed) print("Start inference...") print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") pipe.set_ip_adapter_scale(adapter_strength_ratio) images = pipe( prompt=prompt, negative_prompt=negative_prompt, image_embeds=face_emb, image=face_kps, control_mask=control_mask, controlnet_conditioning_scale=float(identitynet_strength_ratio), num_inference_steps=num_steps, guidance_scale=guidance_scale, height=height, width=width, generator=generator ).images return images[0], gr.update(visible=True) ### Description title = r"""