from dataclasses import dataclass from enum import Enum @dataclass class Task: benchmark: str metric: str col_name: str # Select your tasks here # --------------------------------------------------- class Tasks(Enum): # task_key in the json file, metric_key in the json file, name to display in the leaderboard task0 = Task("mmlu_it", "acc", "MMLU_IT") task1 = Task("arc_it", "acc_norm", "ARC_IT") task2 = Task("hellaswag_it", "acc_norm", "HELLASWAG_IT") NUM_FEWSHOT = 0 # Change with your few shot # --------------------------------------------------- # Your leaderboard name TITLE = """

🚀 Classifica generale degli LLM italiani 🚀

""" # What does your leaderboard evaluate? INTRODUCTION_TEXT = """ Benvenuti nella pagina della open ita llm leaderboard! In questa dashboard potrete trovare tutti i risultati delle performance dei Large Language Models nella lingua italiana sui principali eval effettuati grazie al fantastico [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) Maggiori info nella sezione "about" P.s. la classifica è 100% open source, chiunque può contribuire e aggiungere il proprio modello tramite questo [form](https://forms.gle/Gc9Dfu52xSBhQPpAA) nel mentre che la submission automatica sarà operativa :) Se avete idee/miglioramenti/suggerimenti [scrivetemi pure](https://www.linkedin.com/in/samuele-colombo-ml/) oppure mi trovate sul [discord della community](https://discord.gg/kc97Zwc4ze) """ # Which evaluations are you running? how can people reproduce what you have? LLM_BENCHMARKS_TEXT = f""" ## Come funziona Valutiamo i modelli tramite Eleuther AI Language Model Evaluation Harness , il framework più utilizzato dalla community internazionale per l'evaluation dei modelli Nella classifica troverete i dataset di benchmark più famosi, adatti alla lingua italiana. I task sono: - hellaswag_it - arc_it - m_mmlu_it (5 shots) Per tutti questi task, a un punteggio migliore corrisponde una performance maggiore ## Reproducibility Per riprodurre i risultati scaricate la Eleuther AI Language Model Evaluation Harness ed eseguite: * lm-eval --model hf --model_args pretrained= --tasks hellaswag_it,arc_it --device cuda:0 --batch_size auto:2; * lm-eval --model hf --model_args pretrained=, --tasks m_mmlu_it --num_fewshot 5 --device cuda:0 --batch_size auto:2 """ EVALUATION_QUEUE_TEXT = """ ## Some good practices before submitting a model ### 1) Make sure you can load your model and tokenizer using AutoClasses: ```python from transformers import AutoConfig, AutoModel, AutoTokenizer config = AutoConfig.from_pretrained("your model name", revision=revision) model = AutoModel.from_pretrained("your model name", revision=revision) tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) ``` If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. Note: make sure your model is public! Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! ### 3) Make sure your model has an open license! This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 ### 4) Fill up your model card When we add extra information about models to the leaderboard, it will be automatically taken from the model card ## In case of model failure If your model is displayed in the `FAILED` category, its execution stopped. Make sure you have followed the above steps first. If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r""" Paper coming soon! Pls dateci credits se usate i nostri benchmarks :) """