Spaces:
Runtime error
Runtime error
File size: 2,824 Bytes
ab7237b bd56b3a ab7237b e3004b1 a266672 ab7237b 612e92e ab7237b 612e92e ab7237b 612e92e ab7237b 4999b07 961e8fe 4999b07 ab7237b c7bda61 ab7237b 4999b07 ab7237b 4999b07 ab7237b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(128, 64 * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(64 * 8),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 8, 64 * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 4),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 4, 64 * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(64 * 2),
nn.ReLU(True),
nn.ConvTranspose2d(64 * 2, 64, 4, 2, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
netG = Generator()
device = "cuda" if torch.cuda.is_available() else "cpu"
model_file = "model.pth"
netG.load_state_dict(torch.load(model_file, map_location=device))
netG.eval()
def generate_image():
try:
noise = torch.randn(1, 128, 1, 1, device=device)
with torch.no_grad():
fake_image = netG(noise).cpu()
img = fake_image.squeeze().cpu().numpy()
img = np.transpose(img, (1, 2, 0))
img = (img + 1) / 2.0
img = (img * 255).astype(np.uint8)
return img
except Exception as e:
print(f"Error generating image: {e}")
def generate_images(seed, num_images, is_random):
try:
generated_images = []
if is_random:
seed = np.random.randint(0, 99999999)
else:
np.random.seed(seed)
torch.manual_seed(seed)
noise = torch.randn(num_images, 128, 1, 1).to(device)
with torch.no_grad():
fake_images = netG(noise)
for img in fake_images:
img = img.squeeze().cpu().numpy()
img = np.transpose(img, (1, 2, 0))
img = (img + 1) / 2.0
img = (img * 255).astype(np.uint8)
generated_images.append(img)
print("Seed:", seed)
return generated_images
except Exception as e:
print(f"Error generating images: {e}")
title = "DCGAN Image Generator 🖌️🎨"
description = "Generate non-existing images using DCGAN."
content = """
## How to Use 🎨
To generate an image, follow these steps:
1. Click \"Generate\" button to generate a image!
2. Once the image is generated, you can save it or share it to the community!
"""
iface = gr.Interface(
fn=generate_image,
inputs=None,
outputs=gr.Image(label="Image", type="pil"),
title=title,
description=description,
article=content,
api_name="generate"
)
iface.queue()
iface.launch()
|