File size: 6,065 Bytes
f2500aa
 
 
 
 
 
 
6ed44d0
 
1a360d6
f2500aa
04cac67
f2500aa
 
6ed44d0
 
f2500aa
a35c034
f2500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
987f644
f2500aa
24eea50
f2500aa
 
 
9337cfe
f2500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ed44d0
987f644
6ed44d0
 
1a360d6
6ed44d0
 
1a360d6
4e161c9
 
6ed44d0
8383dcd
f2500aa
4e161c9
adc107a
 
1a360d6
 
6ed44d0
 
f2500aa
 
 
 
 
 
 
 
 
 
36833ea
f2500aa
1141011
f2500aa
 
 
 
 
36833ea
f2500aa
 
 
04cac67
f2500aa
9337cfe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# import gradio as gr

# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()

# %%writefile demo-4bit.py

from textwrap import dedent

# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
from transformers import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html

# from loguru import logger

model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b-int4"

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()

# 按需修改,目前只支持 4/8 bit 量化
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()

import torch

has_cuda = torch.cuda.is_available()
# has_cuda = False  # force cpu

if has_cuda:
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()  # 3.92G
else:
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().float()  # .float()

model = model.eval()

_ = """Override Chatbot.postprocess"""

def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values):
    chatbot.append((parse_text(input), ""))
    for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values,
                                                                return_past_key_values=True,
                                                                max_length=max_length, top_p=top_p,
                                                                temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history, past_key_values


def reset_user_input():
    return gr.update(value='')


def reset_state():
    return [], [], None


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
    with gr.Accordion("Info", open=False):
        _ = """
            A query takes from 30 seconds to a few tens of seconds, dependent on the number of words/characters 
            the question and answer contain.

            * Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
            
            * Suggested temperatures -- translation: up to 0.3; chatting: > 0.4

            * Top P controls dynamic vocabulary selection based on context. 

            For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)

            If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.

            The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
            """
        gr.Markdown(dedent(_))
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                    container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True)

    history = gr.State([])
    past_key_values = gr.State(None)

    submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values],
                    [chatbot, history, past_key_values], show_progress=True, api_name="predict")
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True)

# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)

demo.queue().launch(debug=True)