File size: 12,864 Bytes
9263f1a
f2500aa
 
 
 
 
 
 
6ed44d0
 
04cac67
f2500aa
9263f1a
8d072c1
6ed44d0
68482b0
 
 
 
db21525
0e3a232
db21525
68482b0
f2500aa
 
 
 
 
d5a4641
f2500aa
 
 
 
 
 
68482b0
 
f820383
f2500aa
68482b0
 
 
f2500aa
 
 
9337cfe
f2500aa
68482b0
f2500aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68482b0
f2500aa
 
 
68482b0
f2500aa
 
 
68482b0
f2500aa
 
 
 
 
 
 
 
 
 
 
68482b0
f2500aa
 
 
 
68482b0
 
 
e5002fc
 
 
 
9263f1a
 
 
 
 
 
e5002fc
68482b0
 
 
 
 
 
 
 
 
 
 
f2500aa
 
 
 
 
8d072c1
b0003b5
55c435d
b0003b5
 
 
55c435d
8d072c1
55c435d
68482b0
 
 
8d072c1
 
 
 
 
55c435d
8d072c1
267f542
55c435d
 
 
68482b0
8d072c1
f2500aa
68482b0
f2500aa
 
 
 
 
68482b0
02e74af
 
 
 
 
 
 
 
 
 
68482b0
 
02e74af
68482b0
02e74af
68482b0
02e74af
 
 
68482b0
02e74af
 
 
 
68482b0
 
 
 
 
 
 
 
 
f2500aa
6ae67ec
 
68482b0
 
 
02e74af
6ed44d0
 
97f4d75
68482b0
f719193
 
68482b0
97f4d75
 
6ed44d0
1a360d6
68482b0
4e161c9
6ed44d0
68482b0
f2500aa
4e161c9
adc107a
 
1a360d6
 
6ed44d0
 
f2500aa
 
 
 
68482b0
 
 
 
02e74af
f2500aa
02e74af
 
 
 
f2500aa
 
68482b0
 
 
9263f1a
68482b0
 
 
 
 
 
 
 
 
 
f2500aa
 
 
 
68482b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2500aa
 
68482b0
 
 
04cac67
02e74af
68482b0
 
 
 
 
 
 
 
 
 
 
 
 
 
55c435d
02e74af
4d1ed92
02e74af
4d1ed92
68482b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5002fc
68482b0
cd90503
e5002fc
 
6ae67ec
e5002fc
 
 
68482b0
 
 
 
924e140
68482b0
 
924e140
68482b0
 
 
 
 
924e140
68482b0
924e140
68482b0
f2500aa
9337cfe
 
68482b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# pylint: disable=broad-exception-caught, redefined-outer-name, missing-function-docstring, missing-module-docstring, too-many-arguments, line-too-long, invalid-name, redefined-builtin, redefined-argument-from-local
# import gradio as gr

# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()

# %%writefile demo-4bit.py

from textwrap import dedent

import gradio as gr
import mdtex2html
import torch
from loguru import logger

# credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py
# while mistakes are mine
from transformers import AutoModel, AutoTokenizer

model_name = "THUDM/chatglm2-6b"
# model_name = "THUDM/chatglm2-6b-int4"

RETRY_FLAG = False

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()

# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()

has_cuda = torch.cuda.is_available()
# has_cuda = False  # force cpu

if has_cuda:
    model = AutoModel.from_pretrained(
        model_name, trust_remote_code=True
    ).cuda().half()  # 3.92G
else:
    model = AutoModel.from_pretrained(
        model_name, trust_remote_code=True
    ).half()  # .float() .half().float()

model = model.eval()

_ = """Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = "<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def predict(
    RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    try:
        chatbot.append((parse_text(input), ""))
    except Exception as exc:
        logger.error(exc)
        logger.debug(f"{chatbot=}")
        _ = """
        if chatbot:
            chatbot[-1] = (parse_text(input), str(exc))
            yield chatbot, history, past_key_values
        # """
        yield chatbot, history, past_key_values

    for response, history, past_key_values in model.stream_chat(
        tokenizer,
        input,
        history,
        past_key_values=past_key_values,
        return_past_key_values=True,
        max_length=max_length,
        top_p=top_p,
        temperature=temperature,
    ):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history, past_key_values


def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
    if max_length < 10:
        max_length = 4096
    if top_p < 0.1 or top_p > 1:
        top_p = 0.85
    if temperature <= 0 or temperature > 1:
        temperature = 0.01
    try:
        res, _ = model.chat(
            tokenizer,
            input,
            history=[],
            past_key_values=None,
            max_length=max_length,
            top_p=top_p,
            temperature=temperature,
        )
        # logger.debug(f"{res=} \n{_=}")
    except Exception as exc:
        logger.error(f"{exc=}")
        res = str(exc)

    return res


def reset_user_input():
    return gr.update(value="")


def reset_state():
    return [], [], None


# Delete last turn
def delete_last_turn(chat, history):
    if chat and history:
        chat.pop(-1)
        history.pop(-1)
    return chat, history


# Regenerate response
def retry_last_answer(
    user_input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    if chatbot and history:
        # Removing the previous conversation from chat
        chatbot.pop(-1)
        # Setting up a flag to capture a retry
        RETRY_FLAG = True
        # Getting last message from user
        user_input = history[-1][0]
        # Removing bot response from the history
        history.pop(-1)

    yield from predict(
        RETRY_FLAG,
        user_input,
        chatbot,
        max_length,
        top_p,
        temperature,
        history,
        past_key_values,
    )


with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm")) as demo:
    # gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
    gr.HTML(
        """<center><a href="https://huggingface.co/spaces/mikeee/chatglm2-6b-4bit?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>To avoid the queue and for faster inference Duplicate this Space and upgrade to GPU</center>"""
    )

    with gr.Accordion("Info", open=False):
        _ = """
            ## ChatGLM2-6B-int4

            Try to refresh the browser and try again when  occasionally an error occurs.

            With a GPU, a query takes from a few seconds to a few tens of seconds, dependent on the number of words/characters
            the question and responses contain. The quality of the responses varies quite a bit it seems. Even the same
            question with the same parameters, asked at different times, can result in quite different responses.

            * Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.

            * Suggested temperatures -- translation: up to 0.3; chatting: > 0.4

            * Top P controls dynamic vocabulary selection based on context.

            For a table of example values for different scenarios, refer to [this](https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683)

            If the instance is not on a GPU (T4), it will be very slow. You can try to run the colab notebook [chatglm2-6b-4bit colab notebook](https://colab.research.google.com/drive/1WkF7kOjVCcBBatDHjaGkuJHnPdMWNtbW?usp=sharing) for a spin.

            The T4 GPU is sponsored by a community GPU grant from Huggingface. Thanks a lot!
            """
        gr.Markdown(dedent(_))
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(
                    show_label=False,
                    placeholder="Input...",
                ).style(container=False)
                RETRY_FLAG = gr.Checkbox(value=False, visible=False)
            with gr.Column(min_width=32, scale=1):
                with gr.Row():
                    submitBtn = gr.Button("Submit", variant="primary")
                    deleteBtn = gr.Button("Delete last turn", variant="secondary")
                    retryBtn = gr.Button("Regenerate", variant="secondary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(
                0,
                32768,
                value=8192,
                step=1.0,
                label="Maximum length",
                interactive=True,
            )
            top_p = gr.Slider(
                0, 1, value=0.85, step=0.01, label="Top P", interactive=True
            )
            temperature = gr.Slider(
                0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True
            )

    history = gr.State([])
    past_key_values = gr.State(None)

    user_input.submit(
        predict,
        [
            RETRY_FLAG,
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        [chatbot, history, past_key_values],
        show_progress="full",
    )
    submitBtn.click(
        predict,
        [
            RETRY_FLAG,
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        [chatbot, history, past_key_values],
        show_progress="full",
        api_name="predict",
    )
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(
        reset_state, outputs=[chatbot, history, past_key_values], show_progress="full"
    )

    retryBtn.click(
        retry_last_answer,
        inputs=[
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        # outputs = [chatbot, history, last_user_message, user_message]
        outputs=[chatbot, history, past_key_values],
    )
    deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])

    with gr.Accordion("Example inputs", open=True):
        etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
        examples = gr.Examples(
            examples=[
                ["Explain the plot of Cinderella in a sentence."],
                [
                    "How long does it take to become proficient in French, and what are the best methods for retaining information?"
                ],
                ["What are some common mistakes to avoid when writing code?"],
                ["Build a prompt to generate a beautiful portrait of a horse"],
                ["Suggest four metaphors to describe the benefits of AI"],
                ["Write a pop song about leaving home for the sandy beaches."],
                ["Write a summary demonstrating my ability to tame lions"],
                ["鲁迅和周树人什么关系"],
                ["从前有一头牛,这头牛后面有什么?"],
                ["正无穷大加一大于正无穷大吗?"],
                ["正无穷大加正无穷大大于正无穷大吗?"],
                ["-2的平方根等于什么"],
                ["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
                ["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
                ["鲁迅和周树人什么关系 用英文回答"],
                ["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
                [f"{etext} 翻成中文,列出3个版本"],
                [f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
                ["js 判断一个数是不是质数"],
                ["js 实现python 的 range(10)"],
                ["js 实现python 的 [*(range(10)]"],
                ["假定 1 + 2 = 4, 试求 7 + 8"],
                ["Erkläre die Handlung von Cinderella in einem Satz."],
                ["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
            ],
            inputs=[user_input],
            examples_per_page=30,
        )

    with gr.Accordion("For Chat/Translation API", open=False, visible=False):
        input_text = gr.Text()
        tr_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()
    tr_btn.click(
        trans_api,
        [input_text, max_length, top_p, temperature],
        out_text,
        # show_progress="full",
        api_name="tr",
    )
    _ = """
    input_text.submit(
        trans_api,
        [input_text, max_length, top_p, temperature],
        out_text,
        show_progress="full",
        api_name="tr1",
    )
    # """

# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)

demo.queue().launch(debug=True)