# import gradio as gr # model_name = "models/THUDM/chatglm2-6b-int4" # gr.load(model_name).lauch() # %%writefile demo-4bit.py from textwrap import dedent from transformers import AutoModel, AutoTokenizer import gradio as gr import mdtex2html # from loguru import logger model_name = "THUDM/chatglm2-6b" model_name = "THUDM/chatglm2-6b-int4" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() # 按需修改,目前只支持 4/8 bit 量化 # model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda() import torch has_cuda = torch.cuda.is_available() # has_cuda = False # force cpu if has_cuda: model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() # 3.92G else: model = AutoModel.from_pretrained(model_name, trust_remote_code=True).float() # .float() model = model.eval() _ = """Override Chatbot.postprocess""" def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def parse_text(text): """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f'
' else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"+line text = "".join(lines) return text def predict(input, chatbot, max_length, top_p, temperature, history, past_key_values): chatbot.append((parse_text(input), "")) for response, history, past_key_values in model.stream_chat(tokenizer, input, history, past_key_values=past_key_values, return_past_key_values=True, max_length=max_length, top_p=top_p, temperature=temperature): chatbot[-1] = (parse_text(input), parse_text(response)) yield chatbot, history, past_key_values def reset_user_input(): return gr.update(value='') def reset_state(): return [], [], None with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML("""

ChatGLM2-6B-int4

""") with gr.Accordion("Info", open=False): _ = """ Takes from 30 seconds to a few hundred seconds, dependent on the number of words/characters the question and answer contain. Low temperature: responses will be more deterministic and focused; High temperature: more creative Suggested temperatures -- translation: up to 0.3; chatting: > 0.4 Top P controls dynamic vocabulary selection based on context. For a table of of example values for different scenarios, refer to https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api-a-few-tips-and-tricks-on-controlling-the-creativity-deterministic-output-of-prompt-responses/172683 """ gr.Markdown(dedent(_)) chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): with gr.Column(scale=12): user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( container=False) with gr.Column(min_width=32, scale=1): submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): emptyBtn = gr.Button("Clear History") max_length = gr.Slider(0, 32768, value=8192/2, step=1.0, label="Maximum length", interactive=True) top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) history = gr.State([]) past_key_values = gr.State(None) submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history, past_key_values], [chatbot, history, past_key_values], show_progress=True, api_name="predict") submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot, history, past_key_values], show_progress=True) # demo.queue().launch(share=False, inbrowser=True) # demo.queue().launch(share=True, inbrowser=True, debug=True) demo.queue().launch(debug=True)