Spaces:
Runtime error
Runtime error
# this code is largely inspired by https://huggingface.co/spaces/hysts/ControlNet-with-Anything-v4/blob/main/app_scribble_interactive.py | |
# Thank you, hysts! | |
import sys | |
sys.path.append('./src/ControlNetInpaint/') | |
# functionality based on https://github.com/mikonvergence/ControlNetInpaint | |
import gradio as gr | |
#import torch | |
#from torch import autocast // only for GPU | |
from PIL import Image | |
import numpy as np | |
from io import BytesIO | |
import os | |
# Usage | |
# 1. Upload image or fill with white | |
# 2. Sketch the mask (image->[image,mask] | |
# 3. Sketch the content of the mask | |
## SETUP PIPE | |
from diffusers import StableDiffusionInpaintPipeline, ControlNetModel, UniPCMultistepScheduler | |
from src.pipeline_stable_diffusion_controlnet_inpaint import * | |
from diffusers.utils import load_image | |
from controlnet_aux import HEDdetector | |
hed = HEDdetector.from_pretrained('lllyasviel/Annotators') | |
controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
if torch.cuda.is_available(): | |
# Remove if you do not have xformers installed | |
# see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers | |
# for installation instructions | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.to('cuda') | |
# Functions | |
css=''' | |
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem} | |
.image_upload{min-height:500px} | |
.image_upload [data-testid="image"], .image_upload [data-testid="image"] > div{min-height: 500px} | |
.image_upload [data-testid="sketch"], .image_upload [data-testid="sketch"] > div{min-height: 500px} | |
.image_upload .touch-none{display: flex} | |
#output_image{min-height:500px;max-height=500px;} | |
''' | |
def get_guide(image): | |
return hed(image,scribble=True) | |
def create_demo(): | |
# Global Storage | |
CURRENT_IMAGE={'image': None, | |
'mask': None, | |
'guide': None | |
} | |
HEIGHT, WIDTH=512,512 | |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace","monospace"], | |
primary_hue="lime", | |
secondary_hue="emerald", | |
neutral_hue="slate", | |
), css=css) as demo: | |
gr.Markdown('# Cut and Sketch ✂️▶️✏️') | |
with gr.Accordion('Instructions', open=False): | |
gr.Markdown('## Cut ✂️') | |
gr.Markdown('1. Upload your image below') | |
gr.Markdown('2. **Draw the mask** for the region you want changed (Cut ✂️)') | |
gr.Markdown('3. Click `Set Mask` when it is ready!') | |
gr.Markdown('## Sketch ✏️') | |
gr.Markdown('4. Now, you can **sketch a replacement** object! (Sketch ✏️)') | |
gr.Markdown('5. (You can also provide a **text prompt** if you want)') | |
gr.Markdown('6. 🔮 Click `Generate` when ready! ') | |
example_button=gr.Button(value='Try example image!')#.style(full_width=False, size='sm') | |
with gr.Group(): | |
with gr.Group(): | |
with gr.Column(): | |
with gr.Row() as main_blocks: | |
with gr.Column() as step_1: | |
gr.Markdown('### Mask Input') | |
image = gr.Image(sources=['upload'], | |
shape=[HEIGHT,WIDTH], | |
type='pil',#numpy', | |
elem_classes="image_upload", | |
label='Mask Draw (Cut!)', | |
tool='sketch', | |
brush_radius=60).style(height=500) | |
input_image=image | |
mask_button = gr.Button(value='Set Mask') | |
with gr.Column(visible=False) as step_2: | |
gr.Markdown('### Sketch Input') | |
sketch = gr.Image(sources=['upload'], | |
shape=[HEIGHT,WIDTH], | |
type='pil',#'numpy', | |
elem_classes="image_upload", | |
label='Fill Draw (Sketch!)', | |
tool='sketch', | |
brush_radius=10).style(height=500) | |
sketch_image=sketch | |
run_button = gr.Button(value='Generate', variant="primary") | |
prompt = gr.Textbox(label='Prompt') | |
with gr.Column() as output_step: | |
gr.Markdown('### Output') | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="output_image", | |
).style(height=500,containter=True) | |
with gr.Accordion('Advanced options', open=False): | |
num_steps = gr.Slider(label='Steps', | |
minimum=1, | |
maximum=100, | |
value=20, | |
step=1) | |
text_scale = gr.Slider(label='Text Guidance Scale', | |
minimum=0.1, | |
maximum=30.0, | |
value=7.5, | |
step=0.1) | |
seed = gr.Slider(label='Seed', | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
randomize=True) | |
sketch_scale = gr.Slider(label='Sketch Guidance Scale', | |
minimum=0.0, | |
maximum=1.0, | |
value=1.0, | |
step=0.05) | |
with gr.Accordion('More Info', open=False): | |
gr.Markdown('This demo was created by Mikolaj Czerkawski [@mikonvergence](https://twitter.com/mikonvergence) based on the 🌱 open-source implementation of [ControlNetInpaint](https://github.com/mikonvergence/ControlNetInpaint) (diffusers-friendly!).') | |
gr.Markdown('The tool currently only works with image resolution of 512px.') | |
gr.Markdown('💡 To learn more about diffusion with interactive code, check out my open-source ⏩[DiffusionFastForward](https://github.com/mikonvergence/DiffusionFastForward) course. It contains example code, executable notebooks, videos, notes, and a few use cases for training from scratch!') | |
inputs = [ | |
sketch_image, | |
prompt, | |
num_steps, | |
text_scale, | |
sketch_scale, | |
seed | |
] | |
# STEP 1: Set Mask | |
def set_mask(content): | |
if content is None: | |
gr.Error("You must upload an image first.") | |
return {input_image : None, | |
sketch_image : None, | |
step_1: gr.update(visible=True), | |
step_2: gr.update(visible=False) | |
} | |
background=np.array(content["image"].convert("RGB").resize((512, 512))) # note: direct numpy seemed buggy | |
mask=np.array(content["mask"].convert("RGB").resize((512, 512))) | |
if (mask==0).all(): | |
gr.Error("You must draw a mask for the cut out first.") | |
return {input_image : content['image'], | |
sketch_image : None, | |
step_1: gr.update(visible=True), | |
step_2: gr.update(visible=False) | |
} | |
mask=1*(mask>0) | |
# save vars | |
CURRENT_IMAGE['image']=background | |
CURRENT_IMAGE['mask']=mask | |
guide=get_guide(background) | |
CURRENT_IMAGE['guide']=np.array(guide) | |
guide=255-np.asarray(guide) | |
seg_img = guide*(1-mask) + mask*192 | |
preview = background * (seg_img==255) | |
vis_image=(preview/2).astype(seg_img.dtype) + seg_img * (seg_img!=255) | |
return {input_image : content["image"], | |
sketch_image : vis_image, | |
step_1: gr.update(visible=False), | |
step_2: gr.update(visible=True) | |
} | |
# STEP 2: Generate | |
def generate(content, | |
prompt, | |
num_steps, | |
text_scale, | |
sketch_scale, | |
seed): | |
sketch=np.array(content["mask"].convert("RGB").resize((512, 512))) | |
sketch=(255*(sketch>0)).astype(CURRENT_IMAGE['image'].dtype) | |
mask=CURRENT_IMAGE['mask'] | |
CURRENT_IMAGE['guide']=(CURRENT_IMAGE['guide']*(mask==0) + sketch*(mask!=0)).astype(CURRENT_IMAGE['image'].dtype) | |
mask_img=255*CURRENT_IMAGE['mask'].astype(CURRENT_IMAGE['image'].dtype) | |
new_image = pipe( | |
prompt, | |
num_inference_steps=num_steps, | |
guidance_scale=text_scale, | |
generator=torch.manual_seed(seed), | |
image=Image.fromarray(CURRENT_IMAGE['image']), | |
control_image=Image.fromarray(CURRENT_IMAGE['guide']), | |
controlnet_conditioning_scale=sketch_scale, | |
mask_image=Image.fromarray(mask_img) | |
).images#[0] | |
return {output_image : new_image, | |
step_1: gr.update(visible=True), | |
step_2: gr.update(visible=False) | |
} | |
def example_fill(): | |
return Image.open('data/xp-love.jpg') | |
example_button.click(fn=example_fill, outputs=[input_image]) | |
mask_button.click(fn=set_mask, inputs=[input_image], outputs=[input_image, sketch_image, step_1,step_2]) | |
run_button.click(fn=generate, inputs=inputs, outputs=[output_image, step_1,step_2]) | |
return demo | |
if __name__ == '__main__': | |
demo = create_demo() | |
demo.queue().launch() |