File size: 12,418 Bytes
f15a1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03e01a8
f15a1cd
 
03e01a8
 
 
f15a1cd
 
 
 
 
 
03e01a8
 
 
f15a1cd
 
 
 
 
 
 
 
 
 
 
 
 
03e01a8
 
 
 
 
f15a1cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
See https://github.com/baaivision/Uni3D for source code
"""
import os
import torch
import torch.nn as nn
import timm
import numpy as np
from pointnet2_ops import pointnet2_utils
import open_clip
from huggingface_hub import hf_hub_download
import sys
sys.path.append('')
from feature_extractors import FeatureExtractor
from utils.tokenizer import SimpleTokenizer

import logging

def fps(data, number):
    '''
        data B N 3
        number int
    '''
    fps_idx = pointnet2_utils.furthest_point_sample(data, number) 
    fps_data = pointnet2_utils.gather_operation(data.transpose(1, 2).contiguous(), fps_idx).transpose(1,2).contiguous()
    return fps_data

# https://github.com/Strawberry-Eat-Mango/PCT_Pytorch/blob/main/util.py 
def knn_point(nsample, xyz, new_xyz):
    """
    Input:
        nsample: max sample number in local region
        xyz: all points, [B, N, C]
        new_xyz: query points, [B, S, C]
    Return:
        group_idx: grouped points index, [B, S, nsample]
    """
    sqrdists = square_distance(new_xyz, xyz)
    _, group_idx = torch.topk(sqrdists, nsample, dim = -1, largest=False, sorted=False)
    return group_idx

def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.
    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist    


class PatchDropout(nn.Module):
    """
    https://arxiv.org/abs/2212.00794
    """

    def __init__(self, prob, exclude_first_token=True):
        super().__init__()
        assert 0 <= prob < 1.
        self.prob = prob
        self.exclude_first_token = exclude_first_token  # exclude CLS token
        logging.info("patch dropout prob is {}".format(prob))

    def forward(self, x):
        # if not self.training or self.prob == 0.:
        #     return x

        if self.exclude_first_token:
            cls_tokens, x = x[:, :1], x[:, 1:]
        else:
            cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])

        batch = x.size()[0]
        num_tokens = x.size()[1]

        batch_indices = torch.arange(batch)
        batch_indices = batch_indices[..., None]

        keep_prob = 1 - self.prob
        num_patches_keep = max(1, int(num_tokens * keep_prob))

        rand = torch.randn(batch, num_tokens)
        patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices

        x = x[batch_indices, patch_indices_keep]

        if self.exclude_first_token:
            x = torch.cat((cls_tokens, x), dim=1)

        return x


class Group(nn.Module):
    def __init__(self, num_group, group_size):
        super().__init__()
        self.num_group = num_group
        self.group_size = group_size

    def forward(self, xyz, color):
        '''
            input: B N 3
            ---------------------------
            output: B G M 3
            center : B G 3
        '''
        batch_size, num_points, _ = xyz.shape
        # fps the centers out
        center = fps(xyz, self.num_group) # B G 3
        # knn to get the neighborhood
        # _, idx = self.knn(xyz, center) # B G M
        idx = knn_point(self.group_size, xyz, center) # B G M
        assert idx.size(1) == self.num_group
        assert idx.size(2) == self.group_size
        idx_base = torch.arange(0, batch_size, device=xyz.device).view(-1, 1, 1) * num_points
        idx = idx + idx_base
        idx = idx.view(-1)
        neighborhood = xyz.view(batch_size * num_points, -1)[idx, :]
        neighborhood = neighborhood.view(batch_size, self.num_group, self.group_size, 3).contiguous()

        neighborhood_color = color.view(batch_size * num_points, -1)[idx, :]
        neighborhood_color = neighborhood_color.view(batch_size, self.num_group, self.group_size, 3).contiguous()

        # normalize
        neighborhood = neighborhood - center.unsqueeze(2)

        features = torch.cat((neighborhood, neighborhood_color), dim=-1)
        return neighborhood, center, features

class Encoder(nn.Module):
    def __init__(self, encoder_channel):
        super().__init__()
        self.encoder_channel = encoder_channel
        self.first_conv = nn.Sequential(
            nn.Conv1d(6, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 256, 1)
        )
        self.second_conv = nn.Sequential(
            nn.Conv1d(512, 512, 1),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Conv1d(512, self.encoder_channel, 1)
        )
    def forward(self, point_groups):
        '''
            point_groups : B G N 3
            -----------------
            feature_global : B G C
        '''
        bs, g, n , _ = point_groups.shape
        point_groups = point_groups.reshape(bs * g, n, 6)
        # encoder
        feature = self.first_conv(point_groups.transpose(2,1))  # BG 256 n
        feature_global = torch.max(feature,dim=2,keepdim=True)[0]  # BG 256 1
        feature = torch.cat([feature_global.expand(-1,-1,n), feature], dim=1)# BG 512 n
        feature = self.second_conv(feature) # BG 1024 n
        feature_global = torch.max(feature, dim=2, keepdim=False)[0] # BG 1024
        return feature_global.reshape(bs, g, self.encoder_channel)

class PointcloudEncoder(nn.Module):
    def __init__(self, point_transformer):
        # use the giant branch of uni3d
        super().__init__()
        from easydict import EasyDict
        self.trans_dim = 1408
        self.embed_dim = 1024
        self.group_size = 64
        self.num_group = 512
        # grouper
        self.group_divider = Group(num_group = self.num_group, group_size = self.group_size)
        # define the encoder
        self.encoder_dim = 512
        self.encoder = Encoder(encoder_channel = self.encoder_dim)
       
        # bridge encoder and transformer
        self.encoder2trans = nn.Linear(self.encoder_dim,  self.trans_dim)
        
        # bridge transformer and clip embedding
        self.trans2embed = nn.Linear(self.trans_dim,  self.embed_dim)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.trans_dim))
        self.cls_pos = nn.Parameter(torch.randn(1, 1, self.trans_dim))

        self.pos_embed = nn.Sequential(
            nn.Linear(3, 128),
            nn.GELU(),
            nn.Linear(128, self.trans_dim)
        )  
        # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
        self.patch_dropout = PatchDropout(0.) if 0. > 0. else nn.Identity()
        self.visual = point_transformer


    def forward(self, pts, colors):
        # divide the point cloud in the same form. This is important
        _, center, features = self.group_divider(pts, colors)

        # encoder the input cloud patches
        group_input_tokens = self.encoder(features)  #  B G N
        group_input_tokens = self.encoder2trans(group_input_tokens)
        # prepare cls
        cls_tokens = self.cls_token.expand(group_input_tokens.size(0), -1, -1)  
        cls_pos = self.cls_pos.expand(group_input_tokens.size(0), -1, -1)  
        # add pos embedding
        pos = self.pos_embed(center)
        # final input
        x = torch.cat((cls_tokens, group_input_tokens), dim=1)
        pos = torch.cat((cls_pos, pos), dim=1)
        # transformer
        x = x + pos
        # x = x.half()
        
        # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
        x = self.patch_dropout(x)

        x = self.visual.pos_drop(x)

        # ModuleList not support forward
        for i, blk in enumerate(self.visual.blocks):
            x = blk(x)
        x = self.visual.norm(x[:, 0, :])
        x = self.visual.fc_norm(x)

        x = self.trans2embed(x)
        return x

class Uni3D(nn.Module):
    def __init__(self, point_encoder):
        super().__init__()
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.point_encoder = point_encoder

    def encode_pc(self, pc):
        xyz = pc[:,:,:3].contiguous()
        color = pc[:,:,3:].contiguous()
        pc_feat = self.point_encoder(xyz, color)
        return pc_feat

    def forward(self, pc, text, image):
        text_embed_all = text
        image_embed = image   
        pc_embed = self.encode_pc(pc)
        return {'text_embed': text_embed_all,
                'pc_embed': pc_embed,
                'image_embed': image_embed,
                'logit_scale': self.logit_scale.exp()}

def get_metric_names(model):
    return ['loss', 'uni3d_loss', 'pc_image_acc', 'pc_text_acc']

def create_uni3d(uni3d_path):  
    # create transformer blocks for point cloud via timm
    point_transformer = timm.create_model("eva_giant_patch14_560")

    # create whole point cloud encoder
    point_encoder = PointcloudEncoder(point_transformer)

    # uni3d model
    model = Uni3D(point_encoder=point_encoder,)

    checkpoint = torch.load(uni3d_path, map_location='cpu')
    logging.info('loaded checkpoint {}'.format(uni3d_path))
    sd = checkpoint['module']
    if next(iter(sd.items()))[0].startswith('module'):
        sd = {k[len('module.'):]: v for k, v in sd.items()}
    model.load_state_dict(sd)
    return model

class Uni3dEmbeddingEncoder(FeatureExtractor):
    def __init__(self, cache_dir, **kwargs) -> None:
        bpe_path = "utils/bpe_simple_vocab_16e6.txt.gz"
        # uni3d_path = os.path.join(cache_dir, "Uni3D", "modelzoo", "uni3d-g", "model.pt") # concat the subfolder as hf_hub_download will put it here
        clip_path = os.path.join(cache_dir, "Uni3D", "open_clip_pytorch_model.bin")

        # if not os.path.exists(uni3d_path):
        #     hf_hub_download("BAAI/Uni3D", "model.pt", subfolder="modelzoo/uni3d-g", cache_dir=cache_dir, 
        #                     local_dir=cache_dir + os.sep + "Uni3D")
        if not os.path.exists(clip_path):
            hf_hub_download("timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k", "open_clip_pytorch_model.bin", 
                            cache_dir=cache_dir, local_dir=cache_dir + os.sep + "Uni3D")

        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer = SimpleTokenizer(bpe_path)
        # self.model = create_uni3d(uni3d_path)
        # self.model.eval()
        # self.model.to(self.device)
        self.clip_model, _, self.preprocess = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained=clip_path)
        self.clip_model.to(self.device)
        
    def pc_norm(self, pc):
        """ pc: NxC, return NxC """
        centroid = np.mean(pc, axis=0)
        pc = pc - centroid
        m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
        pc = pc / m
        return pc

    @torch.no_grad()
    def encode_3D(self, data):
        pass
    #     pc = data.to(device=self.device, non_blocking=True)
    #     pc_features = self.model.encode_pc(pc)
    #     pc_features = pc_features / pc_features.norm(dim=-1, keepdim=True)
    #     return pc_features.float()

    @torch.no_grad()
    def encode_text(self, input_text):
        texts = self.tokenizer(input_text).to(device=self.device, non_blocking=True)
        if len(texts.shape) < 2:
            texts = texts[None, ...]
        class_embeddings = self.clip_model.encode_text(texts)
        class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
        return class_embeddings.float()

    @torch.no_grad()
    def encode_image(self, img_tensor_list):
        image = img_tensor_list.to(device=self.device, non_blocking=True)
        image_features = self.clip_model.encode_image(image)
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        return image_features.float()

    def encode_query(self, query_list):
        return self.encode_text(query_list)
    
    def get_img_transform(self):
        return self.preprocess