Spaces:
Runtime error
Runtime error
File size: 12,418 Bytes
f15a1cd 03e01a8 f15a1cd 03e01a8 f15a1cd 03e01a8 f15a1cd 03e01a8 f15a1cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
"""
See https://github.com/baaivision/Uni3D for source code
"""
import os
import torch
import torch.nn as nn
import timm
import numpy as np
from pointnet2_ops import pointnet2_utils
import open_clip
from huggingface_hub import hf_hub_download
import sys
sys.path.append('')
from feature_extractors import FeatureExtractor
from utils.tokenizer import SimpleTokenizer
import logging
def fps(data, number):
'''
data B N 3
number int
'''
fps_idx = pointnet2_utils.furthest_point_sample(data, number)
fps_data = pointnet2_utils.gather_operation(data.transpose(1, 2).contiguous(), fps_idx).transpose(1,2).contiguous()
return fps_data
# https://github.com/Strawberry-Eat-Mango/PCT_Pytorch/blob/main/util.py
def knn_point(nsample, xyz, new_xyz):
"""
Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim = -1, largest=False, sorted=False)
return group_idx
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
class PatchDropout(nn.Module):
"""
https://arxiv.org/abs/2212.00794
"""
def __init__(self, prob, exclude_first_token=True):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
self.exclude_first_token = exclude_first_token # exclude CLS token
logging.info("patch dropout prob is {}".format(prob))
def forward(self, x):
# if not self.training or self.prob == 0.:
# return x
if self.exclude_first_token:
cls_tokens, x = x[:, :1], x[:, 1:]
else:
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
batch = x.size()[0]
num_tokens = x.size()[1]
batch_indices = torch.arange(batch)
batch_indices = batch_indices[..., None]
keep_prob = 1 - self.prob
num_patches_keep = max(1, int(num_tokens * keep_prob))
rand = torch.randn(batch, num_tokens)
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
x = x[batch_indices, patch_indices_keep]
if self.exclude_first_token:
x = torch.cat((cls_tokens, x), dim=1)
return x
class Group(nn.Module):
def __init__(self, num_group, group_size):
super().__init__()
self.num_group = num_group
self.group_size = group_size
def forward(self, xyz, color):
'''
input: B N 3
---------------------------
output: B G M 3
center : B G 3
'''
batch_size, num_points, _ = xyz.shape
# fps the centers out
center = fps(xyz, self.num_group) # B G 3
# knn to get the neighborhood
# _, idx = self.knn(xyz, center) # B G M
idx = knn_point(self.group_size, xyz, center) # B G M
assert idx.size(1) == self.num_group
assert idx.size(2) == self.group_size
idx_base = torch.arange(0, batch_size, device=xyz.device).view(-1, 1, 1) * num_points
idx = idx + idx_base
idx = idx.view(-1)
neighborhood = xyz.view(batch_size * num_points, -1)[idx, :]
neighborhood = neighborhood.view(batch_size, self.num_group, self.group_size, 3).contiguous()
neighborhood_color = color.view(batch_size * num_points, -1)[idx, :]
neighborhood_color = neighborhood_color.view(batch_size, self.num_group, self.group_size, 3).contiguous()
# normalize
neighborhood = neighborhood - center.unsqueeze(2)
features = torch.cat((neighborhood, neighborhood_color), dim=-1)
return neighborhood, center, features
class Encoder(nn.Module):
def __init__(self, encoder_channel):
super().__init__()
self.encoder_channel = encoder_channel
self.first_conv = nn.Sequential(
nn.Conv1d(6, 128, 1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Conv1d(128, 256, 1)
)
self.second_conv = nn.Sequential(
nn.Conv1d(512, 512, 1),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Conv1d(512, self.encoder_channel, 1)
)
def forward(self, point_groups):
'''
point_groups : B G N 3
-----------------
feature_global : B G C
'''
bs, g, n , _ = point_groups.shape
point_groups = point_groups.reshape(bs * g, n, 6)
# encoder
feature = self.first_conv(point_groups.transpose(2,1)) # BG 256 n
feature_global = torch.max(feature,dim=2,keepdim=True)[0] # BG 256 1
feature = torch.cat([feature_global.expand(-1,-1,n), feature], dim=1)# BG 512 n
feature = self.second_conv(feature) # BG 1024 n
feature_global = torch.max(feature, dim=2, keepdim=False)[0] # BG 1024
return feature_global.reshape(bs, g, self.encoder_channel)
class PointcloudEncoder(nn.Module):
def __init__(self, point_transformer):
# use the giant branch of uni3d
super().__init__()
from easydict import EasyDict
self.trans_dim = 1408
self.embed_dim = 1024
self.group_size = 64
self.num_group = 512
# grouper
self.group_divider = Group(num_group = self.num_group, group_size = self.group_size)
# define the encoder
self.encoder_dim = 512
self.encoder = Encoder(encoder_channel = self.encoder_dim)
# bridge encoder and transformer
self.encoder2trans = nn.Linear(self.encoder_dim, self.trans_dim)
# bridge transformer and clip embedding
self.trans2embed = nn.Linear(self.trans_dim, self.embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.trans_dim))
self.cls_pos = nn.Parameter(torch.randn(1, 1, self.trans_dim))
self.pos_embed = nn.Sequential(
nn.Linear(3, 128),
nn.GELU(),
nn.Linear(128, self.trans_dim)
)
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
self.patch_dropout = PatchDropout(0.) if 0. > 0. else nn.Identity()
self.visual = point_transformer
def forward(self, pts, colors):
# divide the point cloud in the same form. This is important
_, center, features = self.group_divider(pts, colors)
# encoder the input cloud patches
group_input_tokens = self.encoder(features) # B G N
group_input_tokens = self.encoder2trans(group_input_tokens)
# prepare cls
cls_tokens = self.cls_token.expand(group_input_tokens.size(0), -1, -1)
cls_pos = self.cls_pos.expand(group_input_tokens.size(0), -1, -1)
# add pos embedding
pos = self.pos_embed(center)
# final input
x = torch.cat((cls_tokens, group_input_tokens), dim=1)
pos = torch.cat((cls_pos, pos), dim=1)
# transformer
x = x + pos
# x = x.half()
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
x = self.patch_dropout(x)
x = self.visual.pos_drop(x)
# ModuleList not support forward
for i, blk in enumerate(self.visual.blocks):
x = blk(x)
x = self.visual.norm(x[:, 0, :])
x = self.visual.fc_norm(x)
x = self.trans2embed(x)
return x
class Uni3D(nn.Module):
def __init__(self, point_encoder):
super().__init__()
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.point_encoder = point_encoder
def encode_pc(self, pc):
xyz = pc[:,:,:3].contiguous()
color = pc[:,:,3:].contiguous()
pc_feat = self.point_encoder(xyz, color)
return pc_feat
def forward(self, pc, text, image):
text_embed_all = text
image_embed = image
pc_embed = self.encode_pc(pc)
return {'text_embed': text_embed_all,
'pc_embed': pc_embed,
'image_embed': image_embed,
'logit_scale': self.logit_scale.exp()}
def get_metric_names(model):
return ['loss', 'uni3d_loss', 'pc_image_acc', 'pc_text_acc']
def create_uni3d(uni3d_path):
# create transformer blocks for point cloud via timm
point_transformer = timm.create_model("eva_giant_patch14_560")
# create whole point cloud encoder
point_encoder = PointcloudEncoder(point_transformer)
# uni3d model
model = Uni3D(point_encoder=point_encoder,)
checkpoint = torch.load(uni3d_path, map_location='cpu')
logging.info('loaded checkpoint {}'.format(uni3d_path))
sd = checkpoint['module']
if next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
return model
class Uni3dEmbeddingEncoder(FeatureExtractor):
def __init__(self, cache_dir, **kwargs) -> None:
bpe_path = "utils/bpe_simple_vocab_16e6.txt.gz"
# uni3d_path = os.path.join(cache_dir, "Uni3D", "modelzoo", "uni3d-g", "model.pt") # concat the subfolder as hf_hub_download will put it here
clip_path = os.path.join(cache_dir, "Uni3D", "open_clip_pytorch_model.bin")
# if not os.path.exists(uni3d_path):
# hf_hub_download("BAAI/Uni3D", "model.pt", subfolder="modelzoo/uni3d-g", cache_dir=cache_dir,
# local_dir=cache_dir + os.sep + "Uni3D")
if not os.path.exists(clip_path):
hf_hub_download("timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k", "open_clip_pytorch_model.bin",
cache_dir=cache_dir, local_dir=cache_dir + os.sep + "Uni3D")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = SimpleTokenizer(bpe_path)
# self.model = create_uni3d(uni3d_path)
# self.model.eval()
# self.model.to(self.device)
self.clip_model, _, self.preprocess = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained=clip_path)
self.clip_model.to(self.device)
def pc_norm(self, pc):
""" pc: NxC, return NxC """
centroid = np.mean(pc, axis=0)
pc = pc - centroid
m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
pc = pc / m
return pc
@torch.no_grad()
def encode_3D(self, data):
pass
# pc = data.to(device=self.device, non_blocking=True)
# pc_features = self.model.encode_pc(pc)
# pc_features = pc_features / pc_features.norm(dim=-1, keepdim=True)
# return pc_features.float()
@torch.no_grad()
def encode_text(self, input_text):
texts = self.tokenizer(input_text).to(device=self.device, non_blocking=True)
if len(texts.shape) < 2:
texts = texts[None, ...]
class_embeddings = self.clip_model.encode_text(texts)
class_embeddings = class_embeddings / class_embeddings.norm(dim=-1, keepdim=True)
return class_embeddings.float()
@torch.no_grad()
def encode_image(self, img_tensor_list):
image = img_tensor_list.to(device=self.device, non_blocking=True)
image_features = self.clip_model.encode_image(image)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
return image_features.float()
def encode_query(self, query_list):
return self.encode_text(query_list)
def get_img_transform(self):
return self.preprocess |