from collections.abc import Sequence from abc import ABC, abstractmethod import torch from PIL.Image import Image class FeatureExtractor(ABC): @abstractmethod def encode_image(self, img_list: Sequence[Image]) -> torch.Tensor: """ Encode the input images and return the corresponding embeddings. Args: img_list: A list of PIL.Image.Image objects. Returns: The embeddings of the input images. The shape should be (len(img_list), embedding_dim). """ raise NotImplementedError @abstractmethod def encode_text(self, text_list: Sequence[str]) -> torch.Tensor: """ Encode the input text data and return the corresponding embeddings. Args: text_list: A list of strings. Returns: The embeddings of the input text data. The shape should be (len(text_list), embedding_dim). """ raise NotImplementedError @abstractmethod def encode_3D(self, pc_tensor: torch.Tensor) -> torch.Tensor: """ Encode the input 3D point cloud and return the corresponding embeddings. Args: pc_tensor: A tensor of shape (B, N, 3 + 3). Returns: The embeddings of the input 3D point cloud. The shape should be (B, embedding_dim). """ raise NotImplementedError @abstractmethod def encode_query(self, queries: Sequence[str]) -> torch.Tensor: """Encode the queries and return the corresponding embeddings. Args: queries: A list of strings. Returns: The embeddings of the input text data. The shape should be (len(input_text), embedding_dim). """ raise NotImplementedError