Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
import torch | |
# this model was loaded from https://hf.co/models | |
model = AutoModelForSeq2SeqLM.from_pretrained("Jayyydyyy/m2m100_418m_tokipona") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
LANG_CODES = { | |
"English":"en", | |
"toki pona":"tl" | |
} | |
def translate(text, src_lang, tgt_lang, candidates:int): | |
""" | |
Translate the text from source lang to target lang | |
""" | |
src = LANG_CODES.get(src_lang) | |
tgt = LANG_CODES.get(tgt_lang) | |
tokenizer.src_lang = src | |
tokenizer.tgt_lang = tgt | |
ins = tokenizer(text, return_tensors='pt').to(device) | |
gen_args = { | |
'return_dict_in_generate': True, | |
'output_scores': True, | |
'output_hidden_states': True, | |
'length_penalty': 0.0, # don't encourage longer or shorter output, | |
'num_return_sequences': candidates, | |
'num_beams':candidates, | |
'forced_bos_token_id': tokenizer.lang_code_to_id[tgt] | |
} | |
outs = model.generate(**{**ins, **gen_args}) | |
output = tokenizer.batch_decode(outs.sequences, skip_special_tokens=True) | |
return output | |
app = gr.Interface( | |
fn=translate, | |
inputs=[ | |
gr.components.Textbox(label="Text"), | |
gr.components.Dropdown(label="Source Language", choices=LANG_CODES.keys()), | |
gr.components.Dropdown(label="Target Language", choices=LANG_CODES.keys()), | |
gr.Slider(label="Number of return sequences", value=1, minimum=1, maximum=12) | |
], | |
outputs=["text"], | |
examples=[["This is an example statement. It will be translated from English to toki pona.", "English", "toki pona"]], | |
cache_examples=False, | |
title="A simple English / toki pona Neural Translation App", | |
description="A simple English / toki pona Neural Translation App" | |
) | |
app.launch() |