Spaces:
Runtime error
Runtime error
File size: 36,855 Bytes
8c141ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 |
import base64
import copy
from io import BytesIO
import io
import os
import random
import time
import traceback
import uuid
import requests
import re
import json
import logging
import argparse
import yaml
from PIL import Image, ImageDraw
from diffusers.utils import load_image
from pydub import AudioSegment
import threading
from queue import Queue
from get_token_ids import get_token_ids_for_task_parsing, get_token_ids_for_choose_model, count_tokens, get_max_context_length
from huggingface_hub.inference_api import InferenceApi
from huggingface_hub.inference_api import ALL_TASKS
from models_server import models, status
from functools import partial
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml.dev")
parser.add_argument("--mode", type=str, default="cli")
args = parser.parse_args()
if __name__ != "__main__":
args.config = "config.gradio.yaml"
config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
if not os.path.exists("logs"):
os.mkdir("logs")
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
if not config["debug"]:
handler.setLevel(logging.INFO)
logger.addHandler(handler)
log_file = config["log_file"]
if log_file:
filehandler = logging.FileHandler(log_file)
filehandler.setLevel(logging.DEBUG)
filehandler.setFormatter(formatter)
logger.addHandler(filehandler)
LLM = config["model"]
use_completion = config["use_completion"]
# consistent: wrong msra model name
LLM_encoding = LLM
if LLM == "gpt-3.5-turbo":
LLM_encoding = "text-davinci-003"
task_parsing_highlight_ids = get_token_ids_for_task_parsing(LLM_encoding)
choose_model_highlight_ids = get_token_ids_for_choose_model(LLM_encoding)
# ENDPOINT MODEL NAME
# /v1/chat/completions gpt-4, gpt-4-0314, gpt-4-32k, gpt-4-32k-0314, gpt-3.5-turbo, gpt-3.5-turbo-0301
# /v1/completions text-davinci-003, text-davinci-002, text-curie-001, text-babbage-001, text-ada-001, davinci, curie, babbage, ada
if use_completion:
api_name = "completions"
else:
api_name = "chat/completions"
if not config["dev"]:
if not config["openai"]["key"].startswith("sk-") and not config["openai"]["key"]=="gradio":
raise ValueError("Incrorrect OpenAI key. Please check your config.yaml file.")
OPENAI_KEY = config["openai"]["key"]
endpoint = f"https://api.openai.com/v1/{api_name}"
if OPENAI_KEY.startswith("sk-"):
HEADER = {
"Authorization": f"Bearer {OPENAI_KEY}"
}
else:
HEADER = None
else:
endpoint = f"{config['local']['endpoint']}/v1/{api_name}"
HEADER = None
PROXY = None
if config["proxy"]:
PROXY = {
"https": config["proxy"],
}
inference_mode = config["inference_mode"]
parse_task_demos_or_presteps = open(config["demos_or_presteps"]["parse_task"], "r").read()
choose_model_demos_or_presteps = open(config["demos_or_presteps"]["choose_model"], "r").read()
response_results_demos_or_presteps = open(config["demos_or_presteps"]["response_results"], "r").read()
parse_task_prompt = config["prompt"]["parse_task"]
choose_model_prompt = config["prompt"]["choose_model"]
response_results_prompt = config["prompt"]["response_results"]
parse_task_tprompt = config["tprompt"]["parse_task"]
choose_model_tprompt = config["tprompt"]["choose_model"]
response_results_tprompt = config["tprompt"]["response_results"]
MODELS = [json.loads(line) for line in open("data/p0_models.jsonl", "r").readlines()]
MODELS_MAP = {}
for model in MODELS:
tag = model["task"]
if tag not in MODELS_MAP:
MODELS_MAP[tag] = []
MODELS_MAP[tag].append(model)
METADATAS = {}
for model in MODELS:
METADATAS[model["id"]] = model
def convert_chat_to_completion(data):
messages = data.pop('messages', [])
tprompt = ""
if messages[0]['role'] == "system":
tprompt = messages[0]['content']
messages = messages[1:]
final_prompt = ""
for message in messages:
if message['role'] == "user":
final_prompt += ("<im_start>"+ "user" + "\n" + message['content'] + "<im_end>\n")
elif message['role'] == "assistant":
final_prompt += ("<im_start>"+ "assistant" + "\n" + message['content'] + "<im_end>\n")
else:
final_prompt += ("<im_start>"+ "system" + "\n" + message['content'] + "<im_end>\n")
final_prompt = tprompt + final_prompt
final_prompt = final_prompt + "<im_start>assistant"
data["prompt"] = final_prompt
data['stop'] = data.get('stop', ["<im_end>"])
data['max_tokens'] = data.get('max_tokens', max(get_max_context_length(LLM) - count_tokens(LLM_encoding, final_prompt), 1))
return data
def send_request(data):
global HEADER
openaikey = data.pop("openaikey")
if use_completion:
data = convert_chat_to_completion(data)
if openaikey and openaikey.startswith("sk-"):
HEADER = {
"Authorization": f"Bearer {openaikey}"
}
response = requests.post(endpoint, json=data, headers=HEADER, proxies=PROXY)
logger.debug(response.text.strip())
if "choices" not in response.json():
return response.json()
if use_completion:
return response.json()["choices"][0]["text"].strip()
else:
return response.json()["choices"][0]["message"]["content"].strip()
def replace_slot(text, entries):
for key, value in entries.items():
if not isinstance(value, str):
value = str(value)
text = text.replace("{{" + key +"}}", value.replace('"', "'").replace('\n', ""))
return text
def find_json(s):
s = s.replace("\'", "\"")
start = s.find("{")
end = s.rfind("}")
res = s[start:end+1]
res = res.replace("\n", "")
return res
def field_extract(s, field):
try:
field_rep = re.compile(f'{field}.*?:.*?"(.*?)"', re.IGNORECASE)
extracted = field_rep.search(s).group(1).replace("\"", "\'")
except:
field_rep = re.compile(f'{field}:\ *"(.*?)"', re.IGNORECASE)
extracted = field_rep.search(s).group(1).replace("\"", "\'")
return extracted
def get_id_reason(choose_str):
reason = field_extract(choose_str, "reason")
id = field_extract(choose_str, "id")
choose = {"id": id, "reason": reason}
return id.strip(), reason.strip(), choose
def record_case(success, **args):
if success:
f = open("logs/log_success.jsonl", "a")
else:
f = open("logs/log_fail.jsonl", "a")
log = args
f.write(json.dumps(log) + "\n")
f.close()
def image_to_bytes(img_url):
img_byte = io.BytesIO()
type = img_url.split(".")[-1]
load_image(img_url).save(img_byte, format="png")
img_data = img_byte.getvalue()
return img_data
def resource_has_dep(command):
args = command["args"]
for _, v in args.items():
if "<GENERATED>" in v:
return True
return False
def fix_dep(tasks):
for task in tasks:
args = task["args"]
task["dep"] = []
for k, v in args.items():
if "<GENERATED>" in v:
dep_task_id = int(v.split("-")[1])
if dep_task_id not in task["dep"]:
task["dep"].append(dep_task_id)
if len(task["dep"]) == 0:
task["dep"] = [-1]
return tasks
def unfold(tasks):
flag_unfold_task = False
try:
for task in tasks:
for key, value in task["args"].items():
if "<GENERATED>" in value:
generated_items = value.split(",")
if len(generated_items) > 1:
flag_unfold_task = True
for item in generated_items:
new_task = copy.deepcopy(task)
dep_task_id = int(item.split("-")[1])
new_task["dep"] = [dep_task_id]
new_task["args"][key] = item
tasks.append(new_task)
tasks.remove(task)
except Exception as e:
print(e)
traceback.print_exc()
logger.debug("unfold task failed.")
if flag_unfold_task:
logger.debug(f"unfold tasks: {tasks}")
return tasks
def chitchat(messages, openaikey=None):
data = {
"model": LLM,
"messages": messages,
"openaikey": openaikey
}
return send_request(data)
def parse_task(context, input, openaikey=None):
demos_or_presteps = parse_task_demos_or_presteps
messages = json.loads(demos_or_presteps)
messages.insert(0, {"role": "system", "content": parse_task_tprompt})
# cut chat logs
start = 0
while start <= len(context):
history = context[start:]
prompt = replace_slot(parse_task_prompt, {
"input": input,
"context": history
})
messages.append({"role": "user", "content": prompt})
history_text = "<im_end>\nuser<im_start>".join([m["content"] for m in messages])
num = count_tokens(LLM_encoding, history_text)
if get_max_context_length(LLM) - num > 800:
break
messages.pop()
start += 2
logger.debug(messages)
data = {
"model": LLM,
"messages": messages,
"temperature": 0,
"logit_bias": {item: config["logit_bias"]["parse_task"] for item in task_parsing_highlight_ids},
"openaikey": openaikey
}
return send_request(data)
def choose_model(input, task, metas, openaikey = None):
prompt = replace_slot(choose_model_prompt, {
"input": input,
"task": task,
"metas": metas,
})
demos_or_presteps = replace_slot(choose_model_demos_or_presteps, {
"input": input,
"task": task,
"metas": metas
})
messages = json.loads(demos_or_presteps)
messages.insert(0, {"role": "system", "content": choose_model_tprompt})
messages.append({"role": "user", "content": prompt})
logger.debug(messages)
data = {
"model": LLM,
"messages": messages,
"temperature": 0,
"logit_bias": {item: config["logit_bias"]["choose_model"] for item in choose_model_highlight_ids}, # 5
"openaikey": openaikey
}
return send_request(data)
def response_results(input, results, openaikey=None):
results = [v for k, v in sorted(results.items(), key=lambda item: item[0])]
prompt = replace_slot(response_results_prompt, {
"input": input,
})
demos_or_presteps = replace_slot(response_results_demos_or_presteps, {
"input": input,
"processes": results
})
messages = json.loads(demos_or_presteps)
messages.insert(0, {"role": "system", "content": response_results_tprompt})
messages.append({"role": "user", "content": prompt})
logger.debug(messages)
data = {
"model": LLM,
"messages": messages,
"temperature": 0,
"openaikey": openaikey
}
return send_request(data)
def huggingface_model_inference(model_id, data, task, huggingfacetoken=None):
if huggingfacetoken is None:
HUGGINGFACE_HEADERS = {}
else:
HUGGINGFACE_HEADERS = {
"Authorization": f"Bearer {huggingfacetoken}",
}
task_url = f"https://api-inference.huggingface.co/models/{model_id}" # InferenceApi does not yet support some tasks
inference = InferenceApi(repo_id=model_id, token=huggingfacetoken)
# NLP tasks
if task == "question-answering":
inputs = {"question": data["text"], "context": (data["context"] if "context" in data else "" )}
result = inference(inputs)
if task == "sentence-similarity":
inputs = {"source_sentence": data["text1"], "target_sentence": data["text2"]}
result = inference(inputs)
if task in ["text-classification", "token-classification", "text2text-generation", "summarization", "translation", "conversational", "text-generation"]:
inputs = data["text"]
result = inference(inputs)
# CV tasks
if task == "visual-question-answering" or task == "document-question-answering":
img_url = data["image"]
text = data["text"]
img_data = image_to_bytes(img_url)
img_base64 = base64.b64encode(img_data).decode("utf-8")
json_data = {}
json_data["inputs"] = {}
json_data["inputs"]["question"] = text
json_data["inputs"]["image"] = img_base64
result = requests.post(task_url, headers=HUGGINGFACE_HEADERS, json=json_data).json()
# result = inference(inputs) # not support
if task == "image-to-image":
img_url = data["image"]
img_data = image_to_bytes(img_url)
# result = inference(data=img_data) # not support
HUGGINGFACE_HEADERS["Content-Length"] = str(len(img_data))
r = requests.post(task_url, headers=HUGGINGFACE_HEADERS, data=img_data)
result = r.json()
if "path" in result:
result["generated image"] = result.pop("path")
if task == "text-to-image":
inputs = data["text"]
img = inference(inputs)
name = str(uuid.uuid4())[:4]
img.save(f"public/images/{name}.png")
result = {}
result["generated image"] = f"/images/{name}.png"
if task == "image-segmentation":
img_url = data["image"]
img_data = image_to_bytes(img_url)
image = Image.open(BytesIO(img_data))
predicted = inference(data=img_data)
colors = []
for i in range(len(predicted)):
colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 155))
for i, pred in enumerate(predicted):
label = pred["label"]
mask = pred.pop("mask").encode("utf-8")
mask = base64.b64decode(mask)
mask = Image.open(BytesIO(mask), mode='r')
mask = mask.convert('L')
layer = Image.new('RGBA', mask.size, colors[i])
image.paste(layer, (0, 0), mask)
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {}
result["generated image with segmentation mask"] = f"/images/{name}.jpg"
result["predicted"] = predicted
if task == "object-detection":
img_url = data["image"]
img_data = image_to_bytes(img_url)
predicted = inference(data=img_data)
image = Image.open(BytesIO(img_data))
draw = ImageDraw.Draw(image)
labels = list(item['label'] for item in predicted)
color_map = {}
for label in labels:
if label not in color_map:
color_map[label] = (random.randint(0, 255), random.randint(0, 100), random.randint(0, 255))
for label in predicted:
box = label["box"]
draw.rectangle(((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])), outline=color_map[label["label"]], width=2)
draw.text((box["xmin"]+5, box["ymin"]-15), label["label"], fill=color_map[label["label"]])
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
result = {}
result["generated image with predicted box"] = f"/images/{name}.jpg"
result["predicted"] = predicted
if task in ["image-classification"]:
img_url = data["image"]
img_data = image_to_bytes(img_url)
result = inference(data=img_data)
if task == "image-to-text":
img_url = data["image"]
img_data = image_to_bytes(img_url)
HUGGINGFACE_HEADERS["Content-Length"] = str(len(img_data))
r = requests.post(task_url, headers=HUGGINGFACE_HEADERS, data=img_data)
result = {}
if "generated_text" in r.json()[0]:
result["generated text"] = r.json()[0].pop("generated_text")
# AUDIO tasks
if task == "text-to-speech":
inputs = data["text"]
response = inference(inputs, raw_response=True)
# response = requests.post(task_url, headers=HUGGINGFACE_HEADERS, json={"inputs": text})
name = str(uuid.uuid4())[:4]
with open(f"public/audios/{name}.flac", "wb") as f:
f.write(response.content)
result = {"generated audio": f"/audios/{name}.flac"}
if task in ["automatic-speech-recognition", "audio-to-audio", "audio-classification"]:
audio_url = data["audio"]
audio_data = requests.get(audio_url, timeout=10).content
response = inference(data=audio_data, raw_response=True)
result = response.json()
if task == "audio-to-audio":
content = None
type = None
for k, v in result[0].items():
if k == "blob":
content = base64.b64decode(v.encode("utf-8"))
if k == "content-type":
type = "audio/flac".split("/")[-1]
audio = AudioSegment.from_file(BytesIO(content))
name = str(uuid.uuid4())[:4]
audio.export(f"public/audios/{name}.{type}", format=type)
result = {"generated audio": f"/audios/{name}.{type}"}
return result
def local_model_inference(model_id, data, task):
inference = partial(models, model_id)
# contronlet
if model_id.startswith("lllyasviel/sd-controlnet-"):
img_url = data["image"]
text = data["text"]
results = inference({"img_url": img_url, "text": text})
if "path" in results:
results["generated image"] = results.pop("path")
return results
if model_id.endswith("-control"):
img_url = data["image"]
results = inference({"img_url": img_url})
if "path" in results:
results["generated image"] = results.pop("path")
return results
if task == "text-to-video":
results = inference(data)
if "path" in results:
results["generated video"] = results.pop("path")
return results
# NLP tasks
if task == "question-answering" or task == "sentence-similarity":
results = inference(json=data)
return results
if task in ["text-classification", "token-classification", "text2text-generation", "summarization", "translation", "conversational", "text-generation"]:
results = inference(json=data)
return results
# CV tasks
if task == "depth-estimation":
img_url = data["image"]
results = inference({"img_url": img_url})
if "path" in results:
results["generated depth image"] = results.pop("path")
return results
if task == "image-segmentation":
img_url = data["image"]
results = inference({"img_url": img_url})
results["generated image with segmentation mask"] = results.pop("path")
return results
if task == "image-to-image":
img_url = data["image"]
results = inference({"img_url": img_url})
if "path" in results:
results["generated image"] = results.pop("path")
return results
if task == "text-to-image":
results = inference(data)
if "path" in results:
results["generated image"] = results.pop("path")
return results
if task == "object-detection":
img_url = data["image"]
predicted = inference({"img_url": img_url})
if "error" in predicted:
return predicted
image = load_image(img_url)
draw = ImageDraw.Draw(image)
labels = list(item['label'] for item in predicted)
color_map = {}
for label in labels:
if label not in color_map:
color_map[label] = (random.randint(0, 255), random.randint(0, 100), random.randint(0, 255))
for label in predicted:
box = label["box"]
draw.rectangle(((box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])), outline=color_map[label["label"]], width=2)
draw.text((box["xmin"]+5, box["ymin"]-15), label["label"], fill=color_map[label["label"]])
name = str(uuid.uuid4())[:4]
image.save(f"public/images/{name}.jpg")
results = {}
results["generated image with predicted box"] = f"/images/{name}.jpg"
results["predicted"] = predicted
return results
if task in ["image-classification", "image-to-text", "document-question-answering", "visual-question-answering"]:
img_url = data["image"]
text = None
if "text" in data:
text = data["text"]
results = inference({"img_url": img_url, "text": text})
return results
# AUDIO tasks
if task == "text-to-speech":
results = inference(data)
if "path" in results:
results["generated audio"] = results.pop("path")
return results
if task in ["automatic-speech-recognition", "audio-to-audio", "audio-classification"]:
audio_url = data["audio"]
results = inference({"audio_url": audio_url})
return results
def model_inference(model_id, data, hosted_on, task, huggingfacetoken=None):
if huggingfacetoken:
HUGGINGFACE_HEADERS = {
"Authorization": f"Bearer {huggingfacetoken}",
}
else:
HUGGINGFACE_HEADERS = None
if hosted_on == "unknown":
r = status(model_id)
logger.debug("Local Server Status: " + str(r))
if "loaded" in r and r["loaded"]:
hosted_on = "local"
else:
huggingfaceStatusUrl = f"https://api-inference.huggingface.co/status/{model_id}"
r = requests.get(huggingfaceStatusUrl, headers=HUGGINGFACE_HEADERS, proxies=PROXY)
logger.debug("Huggingface Status: " + str(r.json()))
if "loaded" in r and r["loaded"]:
hosted_on = "huggingface"
try:
if hosted_on == "local":
inference_result = local_model_inference(model_id, data, task)
elif hosted_on == "huggingface":
inference_result = huggingface_model_inference(model_id, data, task, huggingfacetoken)
except Exception as e:
print(e)
traceback.print_exc()
inference_result = {"error":{"message": str(e)}}
return inference_result
def get_model_status(model_id, url, headers, queue = None):
endpoint_type = "huggingface" if "huggingface" in url else "local"
if "huggingface" in url:
r = requests.get(url, headers=headers, proxies=PROXY)
else:
r = status(model_id)
if "loaded" in r and r["loaded"]:
if queue:
queue.put((model_id, True, endpoint_type))
return True
else:
if queue:
queue.put((model_id, False, None))
return False
def get_avaliable_models(candidates, topk=10, huggingfacetoken = None):
all_available_models = {"local": [], "huggingface": []}
threads = []
result_queue = Queue()
HUGGINGFACE_HEADERS = {
"Authorization": f"Bearer {huggingfacetoken}",
}
for candidate in candidates:
model_id = candidate["id"]
if inference_mode != "local":
huggingfaceStatusUrl = f"https://api-inference.huggingface.co/status/{model_id}"
thread = threading.Thread(target=get_model_status, args=(model_id, huggingfaceStatusUrl, HUGGINGFACE_HEADERS, result_queue))
threads.append(thread)
thread.start()
if inference_mode != "huggingface" and config["local_deployment"] != "minimal":
thread = threading.Thread(target=get_model_status, args=(model_id, "", {}, result_queue))
threads.append(thread)
thread.start()
result_count = len(threads)
while result_count:
model_id, status, endpoint_type = result_queue.get()
if status and model_id not in all_available_models:
all_available_models[endpoint_type].append(model_id)
if len(all_available_models["local"] + all_available_models["huggingface"]) >= topk:
break
result_count -= 1
for thread in threads:
thread.join()
return all_available_models
def collect_result(command, choose, inference_result):
result = {"task": command}
result["inference result"] = inference_result
result["choose model result"] = choose
logger.debug(f"inference result: {inference_result}")
return result
def run_task(input, command, results, openaikey = None, huggingfacetoken = None):
id = command["id"]
args = command["args"]
task = command["task"]
deps = command["dep"]
if deps[0] != -1:
dep_tasks = [results[dep] for dep in deps]
else:
dep_tasks = []
logger.debug(f"Run task: {id} - {task}")
logger.debug("Deps: " + json.dumps(dep_tasks))
if deps[0] != -1:
if "image" in args and "<GENERATED>-" in args["image"]:
resource_id = int(args["image"].split("-")[1])
if "generated image" in results[resource_id]["inference result"]:
args["image"] = results[resource_id]["inference result"]["generated image"]
if "audio" in args and "<GENERATED>-" in args["audio"]:
resource_id = int(args["audio"].split("-")[1])
if "generated audio" in results[resource_id]["inference result"]:
args["audio"] = results[resource_id]["inference result"]["generated audio"]
if "text" in args and "<GENERATED>-" in args["text"]:
resource_id = int(args["text"].split("-")[1])
if "generated text" in results[resource_id]["inference result"]:
args["text"] = results[resource_id]["inference result"]["generated text"]
text = image = audio = None
for dep_task in dep_tasks:
if "generated text" in dep_task["inference result"]:
text = dep_task["inference result"]["generated text"]
logger.debug("Detect the generated text of dependency task (from results):" + text)
elif "text" in dep_task["task"]["args"]:
text = dep_task["task"]["args"]["text"]
logger.debug("Detect the text of dependency task (from args): " + text)
if "generated image" in dep_task["inference result"]:
image = dep_task["inference result"]["generated image"]
logger.debug("Detect the generated image of dependency task (from results): " + image)
elif "image" in dep_task["task"]["args"]:
image = dep_task["task"]["args"]["image"]
logger.debug("Detect the image of dependency task (from args): " + image)
if "generated audio" in dep_task["inference result"]:
audio = dep_task["inference result"]["generated audio"]
logger.debug("Detect the generated audio of dependency task (from results): " + audio)
elif "audio" in dep_task["task"]["args"]:
audio = dep_task["task"]["args"]["audio"]
logger.debug("Detect the audio of dependency task (from args): " + audio)
if "image" in args and "<GENERATED>" in args["image"]:
if image:
args["image"] = image
if "audio" in args and "<GENERATED>" in args["audio"]:
if audio:
args["audio"] = audio
if "text" in args and "<GENERATED>" in args["text"]:
if text:
args["text"] = text
for resource in ["image", "audio"]:
if resource in args and not args[resource].startswith("public/") and len(args[resource]) > 0 and not args[resource].startswith("http"):
args[resource] = f"public/{args[resource]}"
if "-text-to-image" in command['task'] and "text" not in args:
logger.debug("control-text-to-image task, but text is empty, so we use control-generation instead.")
control = task.split("-")[0]
if control == "seg":
task = "image-segmentation"
command['task'] = task
elif control == "depth":
task = "depth-estimation"
command['task'] = task
else:
task = f"{control}-control"
command["args"] = args
logger.debug(f"parsed task: {command}")
if task.endswith("-text-to-image") or task.endswith("-control"):
if inference_mode != "huggingface":
if task.endswith("-text-to-image"):
control = task.split("-")[0]
best_model_id = f"lllyasviel/sd-controlnet-{control}"
else:
best_model_id = task
hosted_on = "local"
reason = "ControlNet is the best model for this task."
choose = {"id": best_model_id, "reason": reason}
logger.debug(f"chosen model: {choose}")
else:
logger.warning(f"Task {command['task']} is not available. ControlNet need to be deployed locally.")
record_case(success=False, **{"input": input, "task": command, "reason": f"Task {command['task']} is not available. ControlNet need to be deployed locally.", "op":"message"})
inference_result = {"error": f"service related to ControlNet is not available."}
results[id] = collect_result(command, "", inference_result)
return False
elif task in ["summarization", "translation", "conversational", "text-generation", "text2text-generation"]: # ChatGPT Can do
best_model_id = "ChatGPT"
reason = "ChatGPT performs well on some NLP tasks as well."
choose = {"id": best_model_id, "reason": reason}
messages = [{
"role": "user",
"content": f"[ {input} ] contains a task in JSON format {command}, 'task' indicates the task type and 'args' indicates the arguments required for the task. Don't explain the task to me, just help me do it and give me the result. The result must be in text form without any urls."
}]
response = chitchat(messages, openaikey)
results[id] = collect_result(command, choose, {"response": response})
return True
else:
if task not in MODELS_MAP:
logger.warning(f"no available models on {task} task.")
record_case(success=False, **{"input": input, "task": command, "reason": f"task not support: {command['task']}", "op":"message"})
inference_result = {"error": f"{command['task']} not found in available tasks."}
results[id] = collect_result(command, "", inference_result)
return False
candidates = MODELS_MAP[task][:20]
all_avaliable_models = get_avaliable_models(candidates, config["num_candidate_models"], huggingfacetoken)
all_avaliable_model_ids = all_avaliable_models["local"] + all_avaliable_models["huggingface"]
logger.debug(f"avaliable models on {command['task']}: {all_avaliable_models}")
if len(all_avaliable_model_ids) == 0:
logger.warning(f"no available models on {command['task']}")
record_case(success=False, **{"input": input, "task": command, "reason": f"no available models: {command['task']}", "op":"message"})
inference_result = {"error": f"no available models on {command['task']} task."}
results[id] = collect_result(command, "", inference_result)
return False
if len(all_avaliable_model_ids) == 1:
best_model_id = all_avaliable_model_ids[0]
hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface"
reason = "Only one model available."
choose = {"id": best_model_id, "reason": reason}
logger.debug(f"chosen model: {choose}")
else:
cand_models_info = [
{
"id": model["id"],
"inference endpoint": all_avaliable_models.get(
"local" if model["id"] in all_avaliable_models["local"] else "huggingface"
),
"likes": model.get("likes"),
"description": model.get("description", "")[:config["max_description_length"]],
"language": model.get("language"),
"tags": model.get("tags"),
}
for model in candidates
if model["id"] in all_avaliable_model_ids
]
choose_str = choose_model(input, command, cand_models_info, openaikey)
logger.debug(f"chosen model: {choose_str}")
try:
choose = json.loads(choose_str)
reason = choose["reason"]
best_model_id = choose["id"]
hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface"
except Exception as e:
logger.warning(f"the response [ {choose_str} ] is not a valid JSON, try to find the model id and reason in the response.")
choose_str = find_json(choose_str)
best_model_id, reason, choose = get_id_reason(choose_str)
hosted_on = "local" if best_model_id in all_avaliable_models["local"] else "huggingface"
inference_result = model_inference(best_model_id, args, hosted_on, command['task'], huggingfacetoken)
if "error" in inference_result:
logger.warning(f"Inference error: {inference_result['error']}")
record_case(success=False, **{"input": input, "task": command, "reason": f"inference error: {inference_result['error']}", "op":"message"})
results[id] = collect_result(command, choose, inference_result)
return False
results[id] = collect_result(command, choose, inference_result)
return True
def chat_huggingface(messages, openaikey = None, huggingfacetoken = None, return_planning = False, return_results = False):
start = time.time()
context = messages[:-1]
input = messages[-1]["content"]
logger.info("*"*80)
logger.info(f"input: {input}")
task_str = parse_task(context, input, openaikey)
logger.info(task_str)
if "error" in task_str:
return str(task_str), {}
else:
task_str = task_str.strip()
try:
tasks = json.loads(task_str)
except Exception as e:
logger.debug(e)
response = chitchat(messages, openaikey)
record_case(success=False, **{"input": input, "task": task_str, "reason": "task parsing fail", "op":"chitchat"})
return response, {}
if task_str == "[]": # using LLM response for empty task
record_case(success=False, **{"input": input, "task": [], "reason": "task parsing fail: empty", "op": "chitchat"})
response = chitchat(messages, openaikey)
return response, {}
if len(tasks)==1 and tasks[0]["task"] in ["summarization", "translation", "conversational", "text-generation", "text2text-generation"]:
record_case(success=True, **{"input": input, "task": tasks, "reason": "task parsing fail: empty", "op": "chitchat"})
response = chitchat(messages, openaikey)
best_model_id = "ChatGPT"
reason = "ChatGPT performs well on some NLP tasks as well."
choose = {"id": best_model_id, "reason": reason}
return response, collect_result(tasks[0], choose, {"response": response})
tasks = unfold(tasks)
tasks = fix_dep(tasks)
logger.debug(tasks)
if return_planning:
return tasks
results = {}
threads = []
tasks = tasks[:]
d = dict()
retry = 0
while True:
num_threads = len(threads)
for task in tasks:
dep = task["dep"]
# logger.debug(f"d.keys(): {d.keys()}, dep: {dep}")
for dep_id in dep:
if dep_id >= task["id"]:
task["dep"] = [-1]
dep = [-1]
break
if len(list(set(dep).intersection(d.keys()))) == len(dep) or dep[0] == -1:
tasks.remove(task)
thread = threading.Thread(target=run_task, args=(input, task, d, openaikey, huggingfacetoken))
thread.start()
threads.append(thread)
if num_threads == len(threads):
time.sleep(0.5)
retry += 1
if retry > 160:
logger.debug("User has waited too long, Loop break.")
break
if len(tasks) == 0:
break
for thread in threads:
thread.join()
results = d.copy()
logger.debug(results)
if return_results:
return results
response = response_results(input, results, openaikey).strip()
end = time.time()
during = end - start
answer = {"message": response}
record_case(success=True, **{"input": input, "task": task_str, "results": results, "response": response, "during": during, "op":"response"})
logger.info(f"response: {response}")
return response, results |