versae commited on
Commit
b049394
1 Parent(s): cc188fd

Adding missing values as -inf in red

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. src/leaderboard/read_evals.py +2 -2
app.py CHANGED
@@ -147,7 +147,7 @@ def update_table_and_plot(
147
  df = (df.style
148
  .format(precision=2, thousands=",", decimal=".")
149
  .highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:])
150
- .highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=0.0)
151
  )
152
  fig = plot_stats(DATA_PATH, columns=columns, table=df)
153
  return df, fig
@@ -278,7 +278,7 @@ with demo:
278
  .highlight_max(props="background-color: lightgreen; color: black;", axis=0,
279
  subset=cols_to_show[1:])
280
  .highlight_between(props="color: red;", axis=0,
281
- subset=cols_to_show[1:], left=-np.inf, right=0.0)
282
  ),
283
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
284
  datatype=TYPES,
 
147
  df = (df.style
148
  .format(precision=2, thousands=",", decimal=".")
149
  .highlight_max(props="background-color: lightgreen; color: black;", axis=0, subset=df.columns[1:])
150
+ .highlight_between(props="color: red;", axis=0, subset=df.columns[1:], left=-np.inf, right=-np.inf)
151
  )
152
  fig = plot_stats(DATA_PATH, columns=columns, table=df)
153
  return df, fig
 
278
  .highlight_max(props="background-color: lightgreen; color: black;", axis=0,
279
  subset=cols_to_show[1:])
280
  .highlight_between(props="color: red;", axis=0,
281
+ subset=cols_to_show[1:], left=-np.inf, right=-np.inf)
282
  ),
283
  headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
284
  datatype=TYPES,
src/leaderboard/read_evals.py CHANGED
@@ -91,7 +91,7 @@ class EvalResult:
91
  # We average all scores of a given metric (not all metrics are present in all files)
92
  accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
93
  if accs.size == 0 or any([acc is None for acc in accs]):
94
- accs = np.array([0.0])
95
 
96
  mean_acc = np.mean(accs) * 100.0
97
  results[task.benchmark] = mean_acc
@@ -126,7 +126,7 @@ class EvalResult:
126
 
127
  def to_dict(self):
128
  """Converts the Eval Result to a dict compatible with our dataframe display"""
129
- average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
130
  data_dict = {
131
  "eval_name": self.eval_name, # not a column, just a save name,
132
  # AutoEvalColumn.precision.name: self.precision.value.name,
 
91
  # We average all scores of a given metric (not all metrics are present in all files)
92
  accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
93
  if accs.size == 0 or any([acc is None for acc in accs]):
94
+ accs = np.array([-np.inf])
95
 
96
  mean_acc = np.mean(accs) * 100.0
97
  results[task.benchmark] = mean_acc
 
126
 
127
  def to_dict(self):
128
  """Converts the Eval Result to a dict compatible with our dataframe display"""
129
+ average = sum([v for v in self.results.values() if v not in (-np.inf, None)]) / len(Tasks)
130
  data_dict = {
131
  "eval_name": self.eval_name, # not a column, just a save name,
132
  # AutoEvalColumn.precision.name: self.precision.value.name,