Spaces:
Runtime error
Runtime error
import platform | |
import random | |
from functools import partial | |
from typing import Optional, Union | |
import numpy as np | |
from mmcv.runner import get_dist_info | |
from mmcv.utils import Registry, build_from_cfg | |
from torch.utils.data import DataLoader | |
from torch.utils.data.dataset import Dataset | |
import torch | |
from torch.utils.data import DistributedSampler as _DistributedSampler | |
class DistributedSampler(_DistributedSampler): | |
def __init__(self, | |
dataset, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
round_up=True): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank) | |
self.shuffle = shuffle | |
self.round_up = round_up | |
if self.round_up: | |
self.total_size = self.num_samples * self.num_replicas | |
else: | |
self.total_size = len(self.dataset) | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
if self.shuffle: | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
else: | |
indices = torch.arange(len(self.dataset)).tolist() | |
# add extra samples to make it evenly divisible | |
if self.round_up: | |
indices = ( | |
indices * | |
int(self.total_size / len(indices) + 1))[:self.total_size] | |
assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank:self.total_size:self.num_replicas] | |
if self.round_up: | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def build_dataloader(dataset: Dataset, | |
samples_per_gpu: int, | |
workers_per_gpu: int, | |
num_gpus: Optional[int] = 1, | |
dist: Optional[bool] = True, | |
shuffle: Optional[bool] = True, | |
round_up: Optional[bool] = True, | |
seed: Optional[Union[int, None]] = None, | |
persistent_workers: Optional[bool] = True, | |
**kwargs): | |
"""Build PyTorch DataLoader. | |
In distributed training, each GPU/process has a dataloader. | |
In non-distributed training, there is only one dataloader for all GPUs. | |
Args: | |
dataset (:obj:`Dataset`): A PyTorch dataset. | |
samples_per_gpu (int): Number of training samples on each GPU, i.e., | |
batch size of each GPU. | |
workers_per_gpu (int): How many subprocesses to use for data loading | |
for each GPU. | |
num_gpus (int, optional): Number of GPUs. Only used in non-distributed | |
training. | |
dist (bool, optional): Distributed training/test or not. Default: True. | |
shuffle (bool, optional): Whether to shuffle the data at every epoch. | |
Default: True. | |
round_up (bool, optional): Whether to round up the length of dataset by | |
adding extra samples to make it evenly divisible. Default: True. | |
persistent_workers (bool): If True, the data loader will not shutdown | |
the worker processes after a dataset has been consumed once. | |
This allows to maintain the workers Dataset instances alive. | |
The argument also has effect in PyTorch>=1.7.0. | |
Default: True | |
kwargs: any keyword argument to be used to initialize DataLoader | |
Returns: | |
DataLoader: A PyTorch dataloader. | |
""" | |
rank, world_size = get_dist_info() | |
if dist: | |
sampler = DistributedSampler( | |
dataset, world_size, rank, shuffle=shuffle, round_up=round_up) | |
shuffle = False | |
batch_size = samples_per_gpu | |
num_workers = workers_per_gpu | |
else: | |
sampler = None | |
batch_size = num_gpus * samples_per_gpu | |
num_workers = num_gpus * workers_per_gpu | |
init_fn = partial( | |
worker_init_fn, num_workers=num_workers, rank=rank, | |
seed=seed) if seed is not None else None | |
data_loader = DataLoader( | |
dataset, | |
batch_size=batch_size, | |
sampler=sampler, | |
num_workers=num_workers, | |
pin_memory=False, | |
shuffle=shuffle, | |
worker_init_fn=init_fn, | |
persistent_workers=persistent_workers, | |
**kwargs) | |
return data_loader | |
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): | |
"""Init random seed for each worker.""" | |
# The seed of each worker equals to | |
# num_worker * rank + worker_id + user_seed | |
worker_seed = num_workers * rank + worker_id + seed | |
np.random.seed(worker_seed) | |
random.seed(worker_seed) | |