|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from threading import Thread |
|
from typing import List |
|
|
|
import torch |
|
import torch |
|
torch.jit.script = lambda f: f |
|
import transformers |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
TextIteratorStreamer, |
|
) |
|
|
|
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor |
|
from deepseek_vl.utils.conversation import Conversation |
|
|
|
|
|
def load_model(model_path): |
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) |
|
tokenizer = vl_chat_processor.tokenizer |
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( |
|
model_path, trust_remote_code=True |
|
) |
|
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() |
|
return tokenizer, vl_gpt, vl_chat_processor |
|
|
|
|
|
def convert_conversation_to_prompts(conversation: Conversation): |
|
prompts = [] |
|
messages = conversation.messages |
|
|
|
for i in range(0, len(messages), 2): |
|
prompt = { |
|
"role": messages[i][0], |
|
"content": ( |
|
messages[i][1][0] |
|
if isinstance(messages[i][1], tuple) |
|
else messages[i][1] |
|
), |
|
"images": [messages[i][1][1]] if isinstance(messages[i][1], tuple) else [], |
|
} |
|
response = {"role": messages[i + 1][0], "content": messages[i + 1][1]} |
|
prompts.extend([prompt, response]) |
|
|
|
return prompts |
|
|
|
|
|
class StoppingCriteriaSub(StoppingCriteria): |
|
def __init__(self, stops=[], encounters=1): |
|
super().__init__() |
|
self.stops = [stop.to("cuda") for stop in stops] |
|
|
|
def __call__( |
|
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs |
|
): |
|
for stop in self.stops: |
|
if input_ids.shape[-1] < len(stop): |
|
continue |
|
if torch.all((stop == input_ids[0][-len(stop) :])).item(): |
|
return True |
|
|
|
return False |
|
|
|
|
|
@torch.inference_mode() |
|
def deepseek_generate( |
|
prompts: list, |
|
vl_gpt: torch.nn.Module, |
|
vl_chat_processor, |
|
tokenizer: transformers.PreTrainedTokenizer, |
|
stop_words: list, |
|
max_length: int = 256, |
|
temperature: float = 1.0, |
|
top_p: float = 1.0, |
|
repetition_penalty=1.1, |
|
): |
|
prompts = prompts |
|
pil_images = list() |
|
for message in prompts: |
|
if "images" not in message: |
|
continue |
|
for pil_img in message["images"]: |
|
pil_images.append(pil_img) |
|
|
|
prepare_inputs = vl_chat_processor( |
|
conversations=prompts, images=pil_images, force_batchify=True |
|
).to(vl_gpt.device) |
|
|
|
return generate( |
|
vl_gpt, |
|
tokenizer, |
|
prepare_inputs, |
|
max_length, |
|
temperature, |
|
repetition_penalty, |
|
top_p, |
|
stop_words, |
|
) |
|
|
|
|
|
@torch.inference_mode() |
|
def generate( |
|
vl_gpt, |
|
tokenizer, |
|
prepare_inputs, |
|
max_gen_len: int = 256, |
|
temperature: float = 0, |
|
repetition_penalty=1.1, |
|
top_p: float = 0.95, |
|
stop_words: List[str] = [], |
|
): |
|
"""Stream the text output from the multimodality model with prompt and image inputs.""" |
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) |
|
|
|
streamer = TextIteratorStreamer(tokenizer) |
|
|
|
stop_words_ids = [ |
|
torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words |
|
] |
|
stopping_criteria = StoppingCriteriaList( |
|
[StoppingCriteriaSub(stops=stop_words_ids)] |
|
) |
|
|
|
generation_config = dict( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=prepare_inputs.attention_mask, |
|
pad_token_id=tokenizer.eos_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=max_gen_len, |
|
do_sample=True, |
|
use_cache=True, |
|
streamer=streamer, |
|
stopping_criteria=stopping_criteria, |
|
) |
|
|
|
if temperature > 0: |
|
generation_config.update( |
|
{ |
|
"do_sample": True, |
|
"top_p": top_p, |
|
"temperature": temperature, |
|
"repetition_penalty": repetition_penalty, |
|
} |
|
) |
|
else: |
|
generation_config["do_sample"] = False |
|
|
|
thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config) |
|
thread.start() |
|
|
|
yield from streamer |
|
|