minnehwg's picture
Update util.py
f70dee2 verified
raw
history blame
4.6 kB
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainer, TrainingArguments
from youtube_transcript_api import YouTubeTranscriptApi
from deepmultilingualpunctuation import PunctuationModel
from googletrans import Translator
import time
import torch
import re
# import httpcore
# setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
cp_aug = 'minnehwg/finetune-newwiki-summarization-ver-augmented2'
def load_model(cp):
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model = AutoModelForSeq2SeqLM.from_pretrained(cp)
return tokenizer, model
def summarize(text, model, tokenizer, num_beams=4, device='cpu'):
model.to(device)
inputs = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True, padding = True).to(device)
with torch.no_grad():
summary_ids = model.generate(inputs, max_length=256, num_beams=num_beams)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def processed(text):
processed_text = text.replace('\n', ' ')
processed_text = processed_text.lower()
return processed_text
def get_subtitles(video_url):
try:
video_id = video_url.split("v=")[1]
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
subs = " ".join(entry['text'] for entry in transcript)
return transcript, subs
except Exception as e:
return [], f"An error occurred: {e}"
def restore_punctuation(text):
model = PunctuationModel()
result = model.restore_punctuation(text)
return result
def translate_long(text, language='vi'):
translator = Translator()
limit = 4700
chunks = []
current_chunk = ''
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
for sentence in sentences:
if len(current_chunk) + len(sentence) <= limit:
current_chunk += sentence.strip() + ' '
else:
chunks.append(current_chunk.strip())
current_chunk = sentence.strip() + ' '
if current_chunk:
chunks.append(current_chunk.strip())
translated_text = ''
for chunk in chunks:
try:
time.sleep(1)
translation = translator.translate(chunk, dest=language)
translated_text += translation.text + ' '
except Exception as e:
translated_text += chunk + ' '
return translated_text.strip()
def split_into_chunks(text, max_words=800, overlap_sentences=2):
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
chunks = []
current_chunk = []
current_word_count = 0
for sentence in sentences:
word_count = len(sentence.split())
if current_word_count + word_count <= max_words:
current_chunk.append(sentence)
current_word_count += word_count
else:
if len(current_chunk) >= overlap_sentences:
overlap = current_chunk[-overlap_sentences:]
print(f"Overlapping sentences: {' '.join(overlap)}")
chunks.append(' '.join(current_chunk))
current_chunk = current_chunk[-overlap_sentences:] + [sentence]
current_word_count = sum(len(sent.split()) for sent in current_chunk)
if current_chunk:
if len(current_chunk) >= overlap_sentences:
overlap = current_chunk[-overlap_sentences:]
print(f"Overlapping sentences: {' '.join(overlap)}")
chunks.append(' '.join(current_chunk))
return chunks
def post_processing(text):
sentences = re.split(r'(?<=[.!?])\s*', text)
for i in range(len(sentences)):
if sentences[i]:
sentences[i] = sentences[i][0].upper() + sentences[i][1:]
text = " ".join(sentences)
return text
def display(text):
sentences = re.split(r'(?<=[.!?])\s*', text)
unique_sentences = list(dict.fromkeys(sentences[:-1]))
formatted_sentences = [f"• {sentence}" for sentence in unique_sentences]
return formatted_sentences
def pipeline(url):
trans, sub = get_subtitles(url)
sub = restore_punctuation(sub)
vie_sub = translate_long(sub)
vie_sub = processed(vie_sub)
chunks = split_into_chunks(vie_sub, 700, 3)
sum_para = []
for i in chunks:
tmp = summarize(i, model_aug, tokenizer, num_beams=4)
sum_para.append(tmp)
sum = ''.join(sum_para)
del sub, vie_sub, sum_para, chunks
sum = post_processing(sum)
re = display(sum)
return re