jadehardouin
commited on
Commit
·
29078ea
1
Parent(s):
044dd38
Update models.py
Browse files
models.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from gradio.components import Component
|
2 |
import gradio as gr
|
|
|
3 |
from abc import ABC, abstractclassmethod
|
4 |
import inspect
|
5 |
|
@@ -12,6 +13,10 @@ class BaseTCOModel(ABC):
|
|
12 |
|
13 |
def __init__(self):
|
14 |
super(BaseTCOModel, self).__setattr__("_components", [])
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def get_components(self) -> list[Component]:
|
17 |
return self._components
|
@@ -42,25 +47,36 @@ class BaseTCOModel(ABC):
|
|
42 |
|
43 |
def get_formula(self):
|
44 |
return self.formula
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
class OpenAIModel(BaseTCOModel):
|
47 |
|
48 |
def __init__(self):
|
49 |
self.set_name("(SaaS) OpenAI")
|
50 |
-
self.set_formula(r"""$
|
51 |
with: <br>
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
""")
|
|
|
56 |
super().__init__()
|
57 |
|
58 |
def render(self):
|
59 |
def on_model_change(model):
|
60 |
|
61 |
if model == "GPT-4":
|
|
|
62 |
return gr.Dropdown.update(choices=["8K", "32K"])
|
63 |
else:
|
|
|
64 |
return gr.Dropdown.update(choices=["4K", "16K"], value="4K")
|
65 |
|
66 |
self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4",
|
@@ -70,196 +86,201 @@ class OpenAIModel(BaseTCOModel):
|
|
70 |
label="Context size",
|
71 |
visible=False, info="Number of tokens the model considers when processing text")
|
72 |
self.model.change(on_model_change, inputs=self.model, outputs=self.context_length)
|
73 |
-
self.input_length = gr.Number(350, label="Average number of input tokens",
|
74 |
-
interactive=True, visible=False)
|
75 |
|
76 |
-
def compute_cost_per_token(self, model, context_length
|
77 |
"""Cost per token = """
|
78 |
-
model = model[0]
|
79 |
-
context_length = context_length[0]
|
80 |
|
81 |
if model == "GPT-4" and context_length == "8K":
|
82 |
cost_per_1k_input_tokens = 0.03
|
|
|
83 |
elif model == "GPT-4" and context_length == "32K":
|
84 |
cost_per_1k_input_tokens = 0.06
|
|
|
85 |
elif model == "GPT-3.5" and context_length == "4K":
|
86 |
cost_per_1k_input_tokens = 0.0015
|
|
|
87 |
else:
|
88 |
cost_per_1k_input_tokens = 0.003
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
return cost_per_output_token
|
93 |
|
94 |
class OpenSourceLlama2Model(BaseTCOModel):
|
95 |
|
96 |
def __init__(self):
|
97 |
self.set_name("(Open source) Llama 2")
|
98 |
-
self.set_formula(r"""$CT = \frac{VM\_CH
|
99 |
with: <br>
|
100 |
CT = Cost per Token <br>
|
101 |
VM_CH = VM Cost per Hour <br>
|
102 |
-
|
103 |
-
|
104 |
-
U = Used
|
|
|
|
|
105 |
""")
|
|
|
106 |
super().__init__()
|
107 |
|
108 |
def render(self):
|
109 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
110 |
-
"2x Nvidia A100 (Azure
|
111 |
-
"
|
112 |
|
113 |
def on_model_change(model):
|
114 |
if model == "Llama 2 7B":
|
115 |
return [gr.Dropdown.update(choices=vm_choices),
|
116 |
-
gr.Markdown.update(value="To see the
|
117 |
gr.Number.update(value=3.6730),
|
118 |
gr.Number.update(value=694.38),
|
119 |
-
gr.Number.update(
|
120 |
]
|
121 |
else:
|
122 |
-
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure
|
123 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
124 |
-
return [gr.Dropdown.update(choices=choices, value="
|
125 |
gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"),
|
126 |
-
gr.Number.update(value=
|
127 |
-
gr.Number.update(value=
|
128 |
-
gr.Number.update(
|
129 |
]
|
130 |
|
131 |
def on_vm_change(model, vm):
|
132 |
# TO DO: load info from CSV
|
133 |
if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)":
|
134 |
-
return [gr.Number.update(value=
|
135 |
-
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure
|
136 |
-
return [gr.Number.update(value=
|
137 |
-
elif model == "Llama 2 7B" and vm == "
|
138 |
-
return [gr.Number.update(value=
|
139 |
-
elif model == "Llama 2 70B" and vm == "
|
140 |
-
return [gr.Number.update(value=
|
141 |
|
142 |
-
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2
|
143 |
-
self.vm = gr.Dropdown(
|
144 |
-
value="
|
145 |
visible=False,
|
146 |
label="Instance of VM with GPU",
|
147 |
info="Your options for this choice depend on the model you previously chose"
|
148 |
)
|
149 |
-
self.vm_cost_per_hour = gr.Number(
|
150 |
interactive=False, visible=False)
|
151 |
-
self.
|
152 |
-
label="Number of tokens per second for this specific model and VM instance",
|
153 |
interactive=False
|
154 |
)
|
155 |
-
self.
|
156 |
-
|
157 |
-
|
|
|
|
|
158 |
|
159 |
-
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.
|
160 |
-
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.
|
161 |
-
self.
|
162 |
-
info="How much the GPU is fully used",
|
163 |
-
interactive=True,
|
164 |
-
visible=False)
|
165 |
-
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
166 |
info="Percentage of time the GPU is used",
|
167 |
interactive=True,
|
168 |
visible=False)
|
169 |
|
170 |
-
def compute_cost_per_token(self, vm_cost_per_hour,
|
171 |
-
|
172 |
-
|
|
|
173 |
|
174 |
class OpenSourceDIY(BaseTCOModel):
|
175 |
|
176 |
def __init__(self):
|
177 |
self.set_name("(Open source) DIY")
|
178 |
-
self.set_formula(r"""$CT = \frac{VM\_CH
|
179 |
with: <br>
|
180 |
CT = Cost per Token <br>
|
181 |
VM_CH = VM Cost per Hour <br>
|
182 |
-
|
183 |
-
|
184 |
-
U = Used
|
|
|
|
|
185 |
""")
|
|
|
186 |
super().__init__()
|
187 |
|
188 |
def render(self):
|
189 |
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False)
|
190 |
-
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH
|
191 |
with: <br>
|
192 |
CT = Cost per Token <br>
|
193 |
VM_CH = VM Cost per Hour <br>
|
194 |
-
|
195 |
-
|
196 |
-
U = Used
|
|
|
|
|
197 |
""", visible=False)
|
198 |
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
|
199 |
interactive=True, visible=False)
|
200 |
-
self.
|
201 |
-
label="Number of tokens per second for this specific model and VM instance",
|
|
|
|
|
|
|
|
|
202 |
interactive=True
|
203 |
)
|
204 |
-
self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
|
205 |
-
info="How much the GPU is fully used",
|
206 |
-
interactive=True,
|
207 |
-
visible=False)
|
208 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
209 |
info="Percentage of time the GPU is used",
|
210 |
interactive=True,
|
211 |
visible=False)
|
212 |
|
213 |
-
def compute_cost_per_token(self, vm_cost_per_hour,
|
214 |
-
|
215 |
-
|
|
|
216 |
|
217 |
class CohereModel(BaseTCOModel):
|
218 |
|
219 |
def __init__(self):
|
220 |
self.set_name("(SaaS) Cohere")
|
221 |
-
self.set_formula(r"""$
|
222 |
with: <br>
|
223 |
-
|
224 |
CT_1M = Cost per one million Tokens (from Cohere's pricing web page) <br>
|
225 |
-
|
|
|
226 |
""")
|
|
|
227 |
super().__init__()
|
228 |
|
229 |
def render(self):
|
230 |
-
def on_use_case_change(use_case):
|
231 |
-
if use_case == "Summarize":
|
232 |
-
return gr.Dropdown.update(choices=["Default"])
|
233 |
-
else:
|
234 |
-
return gr.Dropdown.update(choices=["Default", "Custom"])
|
235 |
-
|
236 |
-
self.use_case = gr.Dropdown(["Generate", "Summarize"], value="Generate",
|
237 |
-
label="API",
|
238 |
-
interactive=True, visible=False)
|
239 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
240 |
label="Model",
|
241 |
interactive=True, visible=False)
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
245 |
|
246 |
-
def compute_cost_per_token(self,
|
247 |
"""Cost per token = """
|
248 |
-
use_case = use_case
|
249 |
-
model = model[0]
|
250 |
|
251 |
if use_case == "Generate":
|
252 |
if model == "Default":
|
253 |
-
|
254 |
else:
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
258 |
|
259 |
-
|
260 |
|
261 |
-
return cost_per_output_token
|
262 |
-
|
263 |
class ModelPage:
|
264 |
|
265 |
def __init__(self, Models: BaseTCOModel):
|
@@ -285,12 +306,17 @@ class ModelPage:
|
|
285 |
output += model.get_components_for_cost_computing()
|
286 |
return output
|
287 |
|
288 |
-
def make_model_visible(self, name:str):
|
289 |
# First decide which indexes
|
290 |
output = []
|
291 |
for model in self.models:
|
292 |
if model.get_name() == name:
|
293 |
-
output+= [gr.update(visible=True)] * len(model.get_components())
|
|
|
|
|
|
|
|
|
|
|
294 |
else:
|
295 |
output+= [gr.update(visible=False)] * len(model.get_components())
|
296 |
return output
|
@@ -303,8 +329,11 @@ class ModelPage:
|
|
303 |
if current_model == model.get_name():
|
304 |
|
305 |
model_args = args[begin:begin+model_n_args]
|
306 |
-
|
|
|
307 |
formula = model.get_formula()
|
308 |
-
|
|
|
|
|
309 |
|
310 |
begin = begin+model_n_args
|
|
|
1 |
from gradio.components import Component
|
2 |
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
from abc import ABC, abstractclassmethod
|
5 |
import inspect
|
6 |
|
|
|
13 |
|
14 |
def __init__(self):
|
15 |
super(BaseTCOModel, self).__setattr__("_components", [])
|
16 |
+
self.use_case = None
|
17 |
+
self.num_users = None
|
18 |
+
self.input_tokens = None
|
19 |
+
self.output_tokens = None
|
20 |
|
21 |
def get_components(self) -> list[Component]:
|
22 |
return self._components
|
|
|
47 |
|
48 |
def get_formula(self):
|
49 |
return self.formula
|
50 |
+
|
51 |
+
def set_latency(self, latency):
|
52 |
+
self.latency = latency
|
53 |
+
|
54 |
+
def get_latency(self):
|
55 |
+
return self.latency
|
56 |
|
57 |
class OpenAIModel(BaseTCOModel):
|
58 |
|
59 |
def __init__(self):
|
60 |
self.set_name("(SaaS) OpenAI")
|
61 |
+
self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br>
|
62 |
with: <br>
|
63 |
+
CR = Cost per Request <br>
|
64 |
+
CIT_1K = Cost per 1000 Input Tokens (from OpenAI's pricing web page) <br>
|
65 |
+
COT_1K = Cost per 1000 Output Tokens <br>
|
66 |
+
IT = Input Tokens <br>
|
67 |
+
OT = Output Tokens
|
68 |
""")
|
69 |
+
self.latency = "15s" #Default value for GPT4
|
70 |
super().__init__()
|
71 |
|
72 |
def render(self):
|
73 |
def on_model_change(model):
|
74 |
|
75 |
if model == "GPT-4":
|
76 |
+
self.latency = "15s"
|
77 |
return gr.Dropdown.update(choices=["8K", "32K"])
|
78 |
else:
|
79 |
+
self.latency = "5s"
|
80 |
return gr.Dropdown.update(choices=["4K", "16K"], value="4K")
|
81 |
|
82 |
self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4",
|
|
|
86 |
label="Context size",
|
87 |
visible=False, info="Number of tokens the model considers when processing text")
|
88 |
self.model.change(on_model_change, inputs=self.model, outputs=self.context_length)
|
|
|
|
|
89 |
|
90 |
+
def compute_cost_per_token(self, model, context_length):
|
91 |
"""Cost per token = """
|
|
|
|
|
92 |
|
93 |
if model == "GPT-4" and context_length == "8K":
|
94 |
cost_per_1k_input_tokens = 0.03
|
95 |
+
cost_per_1k_output_tokens = 0.06
|
96 |
elif model == "GPT-4" and context_length == "32K":
|
97 |
cost_per_1k_input_tokens = 0.06
|
98 |
+
cost_per_1k_output_tokens = 0.12
|
99 |
elif model == "GPT-3.5" and context_length == "4K":
|
100 |
cost_per_1k_input_tokens = 0.0015
|
101 |
+
cost_per_1k_output_tokens = 0.002
|
102 |
else:
|
103 |
cost_per_1k_input_tokens = 0.003
|
104 |
+
cost_per_1k_output_tokens = 0.004
|
105 |
+
cost_per_input_token = (cost_per_1k_input_tokens / 1000)
|
106 |
+
cost_per_output_token = (cost_per_1k_output_tokens / 1000)
|
107 |
|
108 |
+
return cost_per_input_token, cost_per_output_token
|
|
|
|
|
109 |
|
110 |
class OpenSourceLlama2Model(BaseTCOModel):
|
111 |
|
112 |
def __init__(self):
|
113 |
self.set_name("(Open source) Llama 2")
|
114 |
+
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br>
|
115 |
with: <br>
|
116 |
CT = Cost per Token <br>
|
117 |
VM_CH = VM Cost per Hour <br>
|
118 |
+
ITS = Input Tokens per Second <br>
|
119 |
+
OTS = Output Tokens per Second <br>
|
120 |
+
U = Used <br>
|
121 |
+
IT = Input Tokens <br>
|
122 |
+
OT = Output Tokens
|
123 |
""")
|
124 |
+
self.set_latency("27s")
|
125 |
super().__init__()
|
126 |
|
127 |
def render(self):
|
128 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
129 |
+
"2x Nvidia A100 (Azure NC24ads A100 v4)",
|
130 |
+
"2x Nvidia A100 (Azure ND96amsr A100 v4)"]
|
131 |
|
132 |
def on_model_change(model):
|
133 |
if model == "Llama 2 7B":
|
134 |
return [gr.Dropdown.update(choices=vm_choices),
|
135 |
+
gr.Markdown.update(value="To see the benchmark results use for the Llama2-7B model, [click here](https://example.com/script)"),
|
136 |
gr.Number.update(value=3.6730),
|
137 |
gr.Number.update(value=694.38),
|
138 |
+
gr.Number.update(value=694.38),
|
139 |
]
|
140 |
else:
|
141 |
+
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC24ads A100 v4)"]
|
142 |
choices = [x for x in vm_choices if x not in not_supported_vm]
|
143 |
+
return [gr.Dropdown.update(choices=choices, value="2x Nvidia A100 (Azure ND96amsr A100 v4)"),
|
144 |
gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"),
|
145 |
+
gr.Number.update(value=2*37.186),
|
146 |
+
gr.Number.update(value=2860),
|
147 |
+
gr.Number.update(value=18.545),
|
148 |
]
|
149 |
|
150 |
def on_vm_change(model, vm):
|
151 |
# TO DO: load info from CSV
|
152 |
if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)":
|
153 |
+
return [gr.Number.update(value=4.777), gr.Number.update(value=694.38), gr.Number.update(value=694.38)]
|
154 |
+
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC24ads A100 v4)":
|
155 |
+
return [gr.Number.update(value=2*4.777), gr.Number.update(value=1388.76), gr.Number.update(value=1388.76)]
|
156 |
+
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)":
|
157 |
+
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2777.52), gr.Number.update(value=2777.52)]
|
158 |
+
elif model == "Llama 2 70B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)":
|
159 |
+
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2860), gr.Number.update(value=18.449)]
|
160 |
|
161 |
+
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 70B", label="OpenSource models", visible=False)
|
162 |
+
self.vm = gr.Dropdown(choices=["2x Nvidia A100 (Azure ND96amsr A100 v4)"],
|
163 |
+
value="2x Nvidia A100 (Azure ND96amsr A100 v4)",
|
164 |
visible=False,
|
165 |
label="Instance of VM with GPU",
|
166 |
info="Your options for this choice depend on the model you previously chose"
|
167 |
)
|
168 |
+
self.vm_cost_per_hour = gr.Number(2*37.186, label="VM instance cost per hour",
|
169 |
interactive=False, visible=False)
|
170 |
+
self.input_tokens_per_second = gr.Number(2860, visible=False,
|
171 |
+
label="Number of output tokens per second for this specific model and VM instance",
|
172 |
interactive=False
|
173 |
)
|
174 |
+
self.output_tokens_per_second = gr.Number(18.449, visible=False,
|
175 |
+
label="Number of output tokens per second for this specific model and VM instance",
|
176 |
+
interactive=False
|
177 |
+
)
|
178 |
+
self.info = gr.Markdown("To see the script used to benchmark the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False)
|
179 |
|
180 |
+
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second])
|
181 |
+
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second])
|
182 |
+
self.used = gr.Slider(minimum=0.01, value=30., step=0.01, label="% used",
|
|
|
|
|
|
|
|
|
183 |
info="Percentage of time the GPU is used",
|
184 |
interactive=True,
|
185 |
visible=False)
|
186 |
|
187 |
+
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used):
|
188 |
+
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second)
|
189 |
+
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second)
|
190 |
+
return cost_per_input_token, cost_per_output_token
|
191 |
|
192 |
class OpenSourceDIY(BaseTCOModel):
|
193 |
|
194 |
def __init__(self):
|
195 |
self.set_name("(Open source) DIY")
|
196 |
+
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br>
|
197 |
with: <br>
|
198 |
CT = Cost per Token <br>
|
199 |
VM_CH = VM Cost per Hour <br>
|
200 |
+
ITS = Input Tokens per Second <br>
|
201 |
+
OTS = Output Tokens per Second <br>
|
202 |
+
U = Used <br>
|
203 |
+
IT = Input Tokens <br>
|
204 |
+
OT = Output Tokens
|
205 |
""")
|
206 |
+
self.set_latency("The latency can't be estimated in the DIY scenario for the model isn't defined")
|
207 |
super().__init__()
|
208 |
|
209 |
def render(self):
|
210 |
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False)
|
211 |
+
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br>
|
212 |
with: <br>
|
213 |
CT = Cost per Token <br>
|
214 |
VM_CH = VM Cost per Hour <br>
|
215 |
+
ITS = Input Tokens per Second <br>
|
216 |
+
OTS = Output Tokens per Second <br>
|
217 |
+
U = Used <br>
|
218 |
+
IT = Input Tokens <br>
|
219 |
+
OT = Output Tokens
|
220 |
""", visible=False)
|
221 |
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
|
222 |
interactive=True, visible=False)
|
223 |
+
self.input_tokens_per_second = gr.Number(300, visible=False,
|
224 |
+
label="Number of input tokens per second processed for this specific model and VM instance",
|
225 |
+
interactive=True
|
226 |
+
)
|
227 |
+
self.output_tokens_per_second = gr.Number(300, visible=False,
|
228 |
+
label="Number of output tokens per second processed for this specific model and VM instance",
|
229 |
interactive=True
|
230 |
)
|
|
|
|
|
|
|
|
|
231 |
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
|
232 |
info="Percentage of time the GPU is used",
|
233 |
interactive=True,
|
234 |
visible=False)
|
235 |
|
236 |
+
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used):
|
237 |
+
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second)
|
238 |
+
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second)
|
239 |
+
return cost_per_input_token, cost_per_output_token
|
240 |
|
241 |
class CohereModel(BaseTCOModel):
|
242 |
|
243 |
def __init__(self):
|
244 |
self.set_name("(SaaS) Cohere")
|
245 |
+
self.set_formula(r"""$CR = \frac{CT\_1M \times (IT + OT)}{1000000}$ <br>
|
246 |
with: <br>
|
247 |
+
CR = Cost per Request <br>
|
248 |
CT_1M = Cost per one million Tokens (from Cohere's pricing web page) <br>
|
249 |
+
IT = Input Tokens <br>
|
250 |
+
OT = Output Tokens
|
251 |
""")
|
252 |
+
self.set_latency("")
|
253 |
super().__init__()
|
254 |
|
255 |
def render(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
257 |
label="Model",
|
258 |
interactive=True, visible=False)
|
259 |
+
if self.use_case == "Summarize":
|
260 |
+
self.model: gr.Dropdown.update(choices=["Default"])
|
261 |
+
elif self.use_case == "Question-answering":
|
262 |
+
self.model: gr.Dropdown.update(choices=["Default", "Custom"])
|
263 |
+
else:
|
264 |
+
self.model: gr.Dropdown.update(choices=["Default", "Custom"])
|
265 |
|
266 |
+
def compute_cost_per_token(self, model):
|
267 |
"""Cost per token = """
|
268 |
+
use_case = self.use_case
|
|
|
269 |
|
270 |
if use_case == "Generate":
|
271 |
if model == "Default":
|
272 |
+
cost_per_1M_tokens = 15
|
273 |
else:
|
274 |
+
cost_per_1M_tokens = 30
|
275 |
+
elif use_case == "Summarize":
|
276 |
+
cost_per_1M_tokens = 15
|
277 |
+
else:
|
278 |
+
cost_per_1M_tokens = 200
|
279 |
+
cost_per_input_token = cost_per_1M_tokens / 1000000
|
280 |
+
cost_per_output_token = cost_per_1M_tokens / 1000000
|
281 |
|
282 |
+
return cost_per_input_token, cost_per_output_token
|
283 |
|
|
|
|
|
284 |
class ModelPage:
|
285 |
|
286 |
def __init__(self, Models: BaseTCOModel):
|
|
|
306 |
output += model.get_components_for_cost_computing()
|
307 |
return output
|
308 |
|
309 |
+
def make_model_visible(self, name:str, use_case: gr.Dropdown, num_users: gr.Number, input_tokens: gr.Slider, output_tokens: gr.Slider):
|
310 |
# First decide which indexes
|
311 |
output = []
|
312 |
for model in self.models:
|
313 |
if model.get_name() == name:
|
314 |
+
output+= [gr.update(visible=True)] * len(model.get_components())
|
315 |
+
# Set use_case and num_users values in the model
|
316 |
+
model.use_case = use_case
|
317 |
+
model.num_users = num_users
|
318 |
+
model.input_tokens = input_tokens
|
319 |
+
model.output_tokens = output_tokens
|
320 |
else:
|
321 |
output+= [gr.update(visible=False)] * len(model.get_components())
|
322 |
return output
|
|
|
329 |
if current_model == model.get_name():
|
330 |
|
331 |
model_args = args[begin:begin+model_n_args]
|
332 |
+
cost_per_input_token, cost_per_output_token = model.compute_cost_per_token(*model_args)
|
333 |
+
model_tco = cost_per_input_token * model.input_tokens + cost_per_output_token * model.output_tokens
|
334 |
formula = model.get_formula()
|
335 |
+
latency = model.get_latency()
|
336 |
+
|
337 |
+
return f"Model {current_model} has a cost/request of: ${model_tco}", model_tco, formula, f"The average latency of this model is {latency}"
|
338 |
|
339 |
begin = begin+model_n_args
|