from gradio.components import Component import gradio as gr from abc import ABC, abstractclassmethod import inspect class BaseTCOModel(ABC): # TO DO: Find way to specify which component should be used for computing cost def __setattr__(self, name, value): if isinstance(value, Component): self._components.append(value) self.__dict__[name] = value def __init__(self): super(BaseTCOModel, self).__setattr__("_components", []) def get_components(self) -> list[Component]: return self._components def get_components_for_cost_computing(self): return self.components_for_cost_computing def get_name(self): return self.name def register_components_for_cost_computing(self): args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] @abstractclassmethod def compute_cost_per_token(self): pass @abstractclassmethod def render(self): pass def set_name(self, name): self.name = name def set_formula(self, formula): self.formula = formula def get_formula(self): return self.formula class OpenAIModel(BaseTCOModel): def __init__(self): self.set_name("(SaaS) OpenAI") self.set_formula(r"""$CT = \frac{CT\_1K \times 1000}{L}$
with:
CT = Cost per output Token
CT_1K = Cost per 1000 Tokens (from OpenAI's pricing web page)
L = Input Length """) super().__init__() def render(self): def on_model_change(model): if model == "GPT-4": return gr.Dropdown.update(choices=["8K", "32K"]) else: return gr.Dropdown.update(choices=["4K", "16K"], value="4K") self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4", label="OpenAI models", interactive=True, visible=False) self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, label="Context size", visible=False, info="Number of tokens the model considers when processing text") self.model.change(on_model_change, inputs=self.model, outputs=self.context_length) self.input_length = gr.Number(350, label="Average number of input tokens", interactive=True, visible=False) def compute_cost_per_token(self, model, context_length, input_length): """Cost per token = """ model = model[0] context_length = context_length[0] if model == "GPT-4" and context_length == "8K": cost_per_1k_input_tokens = 0.03 elif model == "GPT-4" and context_length == "32K": cost_per_1k_input_tokens = 0.06 elif model == "GPT-3.5" and context_length == "4K": cost_per_1k_input_tokens = 0.0015 else: cost_per_1k_input_tokens = 0.003 cost_per_output_token = cost_per_1k_input_tokens * input_length / 1000 return cost_per_output_token class OpenSourceLlama2Model(BaseTCOModel): def __init__(self): self.set_name("(Open source) Llama 2") self.set_formula(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
TS = Tokens per Second
MO = Maxed Out
U = Used """) super().__init__() def render(self): vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)", "4x Nvidia A100 (Azure NC48ads A100 v4)"] def on_model_change(model): if model == "Llama 2 7B": return [gr.Dropdown.update(choices=vm_choices), gr.Markdown.update(value="To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)"), gr.Number.update(value=3.6730), gr.Number.update(value=694.38), gr.Number.update(visible=True) ] else: not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC48ads A100 v4)"] choices = [x for x in vm_choices if x not in not_supported_vm] return [gr.Dropdown.update(choices=choices, value="4x Nvidia A100 (Azure NC48ads A100 v4)"), gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"), gr.Number.update(value=14.692), gr.Number.update(value=18.6), gr.Number.update(visible=False) ] def on_vm_change(model, vm): # TO DO: load info from CSV if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)": return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)] elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)": return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)] elif model == "Llama 2 7B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)": return [gr.Number.update(value=14.692), gr.Number.update(value=2777.52)] elif model == "Llama 2 70B" and vm == "4x Nvidia A100 (Azure NC48ads A100 v4)": return [gr.Number.update(value=14.692), gr.Number.update(value=18.6)] self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False) self.vm = gr.Dropdown(vm_choices, value="1x Nvidia A100 (Azure NC24ads A100 v4)", visible=False, label="Instance of VM with GPU", info="Your options for this choice depend on the model you previously chose" ) self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour", interactive=False, visible=False) self.tokens_per_second = gr.Number(694.38, visible=False, label="Number of tokens per second for this specific model and VM instance", interactive=False ) self.input_length = gr.Number(233, label="Average number of input tokens", info="This is the number of input tokens used when the model was benchmarked to get the number of tokens/second it processes", interactive=False, visible=False) self.info = gr.Markdown("To see the script used to benchmark the Llama2-7B model, [click here](https://example.com/script)", interactive=False, visible=False) self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.tokens_per_second, self.input_length]) self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second]) self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out", info="How much the GPU is fully used", interactive=True, visible=False) self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used", info="Percentage of time the GPU is used", interactive=True, visible=False) def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out, used): cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out * used) return cost_per_token class OpenSourceDIY(BaseTCOModel): def __init__(self): self.set_name("(Open source) DIY") self.set_formula(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
TS = Tokens per Second
MO = Maxed Out
U = Used """) super().__init__() def render(self): self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False) self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$
with:
CT = Cost per Token
VM_CH = VM Cost per Hour
TS = Tokens per Second
MO = Maxed Out
U = Used """, visible=False) self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour", interactive=True, visible=False) self.tokens_per_second = gr.Number(700, visible=False, label="Number of tokens per second for this specific model and VM instance", interactive=True ) self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out", info="How much the GPU is fully used", interactive=True, visible=False) self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used", info="Percentage of time the GPU is used", interactive=True, visible=False) def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out, used): cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out * used) return cost_per_token class CohereModel(BaseTCOModel): def __init__(self): self.set_name("(SaaS) Cohere") self.set_formula(r"""$CT = \frac{CT\_1K \times 1000}{L}$
with:
CT = Cost per output Token
CT_1M = Cost per one million Tokens (from Cohere's pricing web page)
L = Input Length """) super().__init__() def render(self): def on_use_case_change(use_case): if use_case == "Summarize": return gr.Dropdown.update(choices=["Default"]) else: return gr.Dropdown.update(choices=["Default", "Custom"]) self.use_case = gr.Dropdown(["Generate", "Summarize"], value="Generate", label="API", interactive=True, visible=False) self.model = gr.Dropdown(["Default", "Custom"], value="Default", label="Model", interactive=True, visible=False) self.use_case.change(on_use_case_change, inputs=self.use_case, outputs=self.model) self.input_length = gr.Number(350, label="Average number of input tokens", interactive=True, visible=False) def compute_cost_per_token(self, use_case, model, input_length): """Cost per token = """ use_case = use_case[0] model = model[0] if use_case == "Generate": if model == "Default": cost_per_1M_input_tokens = 15 else: cost_per_1M_input_tokens = 30 else: cost_per_1M_input_tokens = 15 cost_per_output_token = cost_per_1M_input_tokens * input_length / 1000000 return cost_per_output_token class ModelPage: def __init__(self, Models: BaseTCOModel): self.models: list[BaseTCOModel] = [] for Model in Models: model = Model() self.models.append(model) def render(self): for model in self.models: model.render() model.register_components_for_cost_computing() def get_all_components(self) -> list[Component]: output = [] for model in self.models: output += model.get_components() return output def get_all_components_for_cost_computing(self) -> list[Component]: output = [] for model in self.models: output += model.get_components_for_cost_computing() return output def make_model_visible(self, name:str): # First decide which indexes output = [] for model in self.models: if model.get_name() == name: output+= [gr.update(visible=True)] * len(model.get_components()) else: output+= [gr.update(visible=False)] * len(model.get_components()) return output def compute_cost_per_token(self, *args): begin=0 current_model = args[-1] for model in self.models: model_n_args = len(model.get_components_for_cost_computing()) if current_model == model.get_name(): model_args = args[begin:begin+model_n_args] model_tco = model.compute_cost_per_token(*model_args) formula = model.get_formula() return f"Model {current_model} has a TCO of: ${model_tco}", model_tco, formula begin = begin+model_n_args