Spaces:
Runtime error
Runtime error
File size: 10,448 Bytes
faca43f 0015338 d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a 0015338 d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a d54ea4b 6e8146a 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b faca43f 5528541 faca43f 5528541 faca43f 5528541 faca43f 0015338 6e8146a 0015338 faca43f d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 faca43f 0015338 5528541 d54ea4b faca43f 0015338 d54ea4b 0015338 d54ea4b faca43f d54ea4b 0015338 d54ea4b 0015338 6e8146a 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b 0015338 d54ea4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import { pipeline, env } from "@xenova/transformers";
import init, { Model } from "./phi/m.js";
import { streamToAsyncIterable } from "$lib/utils/streamToAsyncIterable";
import URI from "urijs";
import { compileTemplate2 } from "$lib/utils/template";
// Shamelessly stolen from Transformers.js
export async function tryCache(cache, ...names) {
for (let name of names) {
try {
console.log(name);
let result = await cache.match(name);
if (result) return result;
} catch (e) {
continue;
}
}
return undefined;
}
async function read_stream(url, response) {
const reader = response.body.getReader();
const contentLength = +response.headers.get("Content-Length");
let receivedLength = 0;
let chunks = [];
let uri = new URI(url);
while (true) {
const { done, value } = await reader.read();
if (done) {
break;
}
chunks.push(value);
receivedLength += value.length;
let percent = (receivedLength / contentLength) * 100;
self.postMessage({ status: "progress", file: uri.filename(), progress: percent });
}
let chunksAll = new Uint8Array(receivedLength);
let position = 0;
for (let chunk of chunks) {
chunksAll.set(chunk, position);
position += chunk.length;
}
return chunksAll;
}
async function fetchArrayBuffer(url) {
let cache = await caches.open("transformers-cache");
const response = await tryCache(cache, url);
if (response != undefined) {
console.log(url);
let res = await read_stream(url, response);
cache.put(
url,
new Response(res, {
headers: response.headers,
})
);
return new Uint8Array(res);
} else {
const response = await fetch(url);
let res = await read_stream(url, response);
cache.put(
url,
new Response(res, {
headers: response.headers,
})
);
return new Uint8Array(res);
}
}
class Phi {
static instance = {};
static async getInstance(weightsURL, modelID, tokenizerURL, quantized) {
// load individual modelID only once
if (!this.instance[modelID]) {
await init();
self.postMessage({ status: "loading", message: "Loading Model" });
const [weightsArrayU8, tokenizerArrayU8] = await Promise.all([
fetchArrayBuffer(weightsURL),
fetchArrayBuffer(tokenizerURL),
]);
self.postMessage({ status: "init_model" });
this.instance[modelID] = new Model(weightsArrayU8, tokenizerArrayU8, quantized);
self.postMessage({ status: "ready", model: "phi-1_5" });
}
return this.instance[modelID];
}
}
export class FlanPipeline {
static curr_model = "";
static instance = null;
static async getInstance(progress_callback = null, model, task) {
if (this.instance === null) {
this.instance = pipeline(task, model, { progress_callback });
this.curr_model = model;
} else {
if (this.curr_model != model) {
this.instance = pipeline(task, model, { progress_callback });
this.curr_model = model;
}
}
return this.instance;
}
}
let controller = null;
let phi_model = null;
// Listen for messages from the main thread
self.addEventListener("message", async (event) => {
if (event.data.command == "abort") {
console.log("ABORT");
if (controller != null) {
try {
controller.abort();
} catch (e) {
console.log(e);
}
}
} else if (event.data.model_obj.is_local ?? true) {
if (event.data.model_obj.is_phi ?? false) {
controller = new AbortController();
generate_phi(event.data);
} else {
let pipe = await FlanPipeline.getInstance(
(x) => {
self.postMessage(x);
},
event.data.model,
event.data.model_obj.type
);
let output = await pipe(event.data.text, {
max_new_tokens: event.data.model_obj.parameters?.max_new_tokens ?? 256,
temperature: event.data.model_obj.parameters?.temperature ?? 0.7,
callback_function: (x) => {
self.postMessage({
status: "update",
output: pipe.tokenizer.decode(x[0].output_token_ids, { skip_special_tokens: true }),
id_now: event.data.id_now,
});
},
});
// Send the output back to the main thread
self.postMessage({
status: "complete",
output: output,
searchID: event.data.searchID,
id_now: event.data.id_now,
model: "phi-1_5",
});
}
} else {
const m = {
preprompt: event.data.model_obj.preprompt,
userMessageToken: event.data.model_obj.userMessageToken,
userMessageEndToken: event.data.model_obj.userMessageEndToken,
assistantMessageToken: event.data.model_obj.assistantMessageToken,
assistantMessageEndToken: event.data.model_obj.assistantMessageEndToken,
}
console.log(event.data.model_obj.chatPromptTemplate)
const t = compileTemplate2(event.data.model_obj.chatPromptTemplate, m)
const res = t({messages: event.data.messages, preprompt: m.preprompt})
console.log(res)
controller = new AbortController();
const context = buildContext(event.data);
const newParameters = {
max_new_tokens: event.data.model_obj.parameters?.max_new_tokens ?? 256,
temperature: event.data.model_obj.parameters?.temperature ?? 0.7,
truncate: event.data.model_obj.parameters?.truncate ?? 2048,
return_full_text: false,
};
let body = JSON.stringify({
inputs: res,
parameters: newParameters,
});
let text_output = "";
const server_addr = event.data.model_obj.server_addr ?? ""
try {
let resp = await fetch(server_addr + "/generate_stream", {
headers: {
"Content-Type": "application/json",
accesstoken: event.data.jwt,
},
method: "POST",
body: body,
signal: controller.signal,
});
if (resp.ok) {
let stream1 = resp.body;
for await (const input of streamToAsyncIterable(stream1)) {
const lines = new TextDecoder()
.decode(input)
.split("\n")
.filter((line) => line.startsWith("data:"));
for (const message of lines) {
let lastIndex = message.lastIndexOf("\ndata:");
if (lastIndex === -1) {
lastIndex = message.indexOf("data");
}
if (lastIndex === -1) {
console.error("Could not parse last message", message);
}
let lastMessage = message.slice(lastIndex).trim().slice("data:".length);
if (lastMessage.includes("\n")) {
lastMessage = lastMessage.slice(0, lastMessage.indexOf("\n"));
}
try {
const lastMessageJSON = JSON.parse(lastMessage);
if (!lastMessageJSON.generated_text) {
const res = lastMessageJSON.token.text;
text_output += res;
self.postMessage({
status: "update",
output: text_output,
id_now: event.data.id_now,
});
}
} catch (e) {
console.log(lastMessage);
console.log(e);
}
}
}
} else {
if (resp.status == 401 || resp.status == 403) {
self.postMessage({
status: "invalid_jwt",
});
}
console.log(resp);
self.postMessage({
status: "aborted",
output: text_output,
searchID: event.data.searchID,
id_now: event.data.id_now,
})
self.postMessage({
status: "error",
output: text_output,
error: "Error while trying to communicate with the server",
})
return;
}
} catch (e) {
console.log(e)
self.postMessage({
status: "aborted",
output: text_output,
searchID: event.data.searchID,
id_now: event.data.id_now,
})
if (e.name != "AbortError") {
self.postMessage({
status: "error",
output: text_output,
error: "Error while trying to communicate with the server",
})
}
return;
}
self.postMessage({
status: "complete",
output: text_output,
searchID: event.data.searchID,
id_now: event.data.id_now,
});
}
});
async function generate_phi(data) {
const tokenizerURL = "https://huggingface.co/microsoft/phi-1_5/raw/main/tokenizer.json";
const weightsURL = "https://huggingface.co/lmz/candle-quantized-phi/resolve/main/model-q4k.gguf";
let prompt = data.text;
let maxSeqLen = data.model_obj.parameters?.max_new_tokens ?? 256;
let temp = data.model_obj.parameters?.temperature ?? 0.7;
let modelID = 0;
let quantized = true;
let top_p = 1;
let repeatPenalty = 1.1;
let seed = 299792458;
self.postMessage({ status: "initiate", file: "tokenizer.json", name: "phi-1_5" }); // Fake init
try {
const model = await Phi.getInstance(weightsURL, modelID, tokenizerURL, quantized);
const firstToken = model.init_with_prompt(prompt, temp, top_p, repeatPenalty, 64, BigInt(seed));
const seq_len = 2048;
let sentence = firstToken;
let maxTokens = maxSeqLen ? maxSeqLen : seq_len - prompt.length - 1;
let startTime = performance.now();
let tokensCount = 0;
while (tokensCount < maxTokens) {
await new Promise(async (resolve) => {
if (controller && controller.signal.aborted) {
self.postMessage({
status: "aborted",
message: "Aborted",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
return;
}
const token = await model.next_token();
if (token === "<|endoftext|>") {
self.postMessage({
status: "complete",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
return;
}
const tokensSec = ((tokensCount + 1) / (performance.now() - startTime)) * 1000;
sentence += token;
self.postMessage({
status: "update",
message: "Generating token",
token: token,
output: sentence,
totalTime: performance.now() - startTime,
tokensSec,
prompt: prompt,
id_now: data.id_now,
});
setTimeout(resolve, 0);
});
tokensCount++;
}
self.postMessage({
status: "complete",
output: sentence,
searchID: data.searchID,
id_now: data.id_now,
});
} catch (e) {
console.log(e);
self.postMessage({ error: e });
}
}
function buildContext(data) {
// Will be replaced by the original contextManager made by HF
let context = "";
let got_user_prompt = false;
for (let message of data.messages) {
if (message.content.trim().length > 0) {
if (message.from === "user") {
if (got_user_prompt == false) {
context = context + "<s>[INST] " + message.content;
got_user_prompt = true;
} else {
context = context + " " + message.content;
}
} else {
got_user_prompt = false;
context = context + " [/INST]" + message.content + " </s>";
}
}
}
if (got_user_prompt == true) {
context = context + " [/INST]";
} else {
context = context + "<s>[INST] " + data.text + " [/INST]";
}
return context;
}
|