Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,59 +5,89 @@ MODELS = {
|
|
5 |
"Tatar": {"model_id": "sammy786/wav2vec2-xlsr-tatar", "has_lm": False},
|
6 |
"Chuvash": {"model_id": "sammy786/wav2vec2-xlsr-chuvash", "has_lm": False},
|
7 |
"Bashkir": {"model_id": "AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt", "has_lm": True},
|
8 |
-
"Erzya": {"model_id": "DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1", "has_lm":
|
9 |
}
|
10 |
|
11 |
CACHED_MODELS_BY_ID = {}
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
def run(input_file, language, decoding_type):
|
16 |
-
|
17 |
-
#logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}")
|
18 |
|
|
|
|
|
19 |
model = MODELS.get(language, None)
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
else:
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
36 |
-
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
37 |
-
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
38 |
-
else:
|
39 |
-
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
40 |
-
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
41 |
-
feature_extractor=processor.feature_extractor, decoder=None)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"Tatar": {"model_id": "sammy786/wav2vec2-xlsr-tatar", "has_lm": False},
|
6 |
"Chuvash": {"model_id": "sammy786/wav2vec2-xlsr-chuvash", "has_lm": False},
|
7 |
"Bashkir": {"model_id": "AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt", "has_lm": True},
|
8 |
+
"Erzya": {"model_id": "DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1", "has_lm": False}
|
9 |
}
|
10 |
|
11 |
CACHED_MODELS_BY_ID = {}
|
12 |
|
13 |
+
LANGUAGES_ENG = list(MODELS.keys())
|
14 |
+
LANGUAGES_RUS = ["Татарский", "Чувашский", "Башкирский", "Эрзянский"]
|
15 |
+
RUS2ENG = {k:v for k,v in zip(LANGUAGES_RUS, LANGUAGES_ENG)}
|
16 |
+
LANG2YDX = {"Tatar": 'tt',
|
17 |
+
"Chuvash": "ba",
|
18 |
+
"Bashkir": "cv",
|
19 |
+
"Erzya": None,
|
20 |
+
"English": 'en',
|
21 |
+
'Русский': 'ru'
|
22 |
+
}
|
23 |
|
|
|
|
|
|
|
24 |
|
25 |
+
def run(input_file, language, decoding_type, lang):
|
26 |
+
language = RUS2ENG.get(language, language)
|
27 |
model = MODELS.get(language, None)
|
|
|
28 |
|
29 |
+
model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None)
|
30 |
+
if model_instance is None:
|
31 |
+
model_instance = AutoModelForCTC.from_pretrained(model["model_id"])
|
32 |
+
CACHED_MODELS_BY_ID[model["model_id"]] = model_instance
|
|
|
33 |
|
34 |
+
if decoding_type == "LM":
|
35 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"])
|
36 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
37 |
+
feature_extractor=processor.feature_extractor, decoder=processor.decoder)
|
38 |
+
else:
|
39 |
+
processor = Wav2Vec2Processor.from_pretrained(model["model_id"])
|
40 |
+
asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer,
|
41 |
+
feature_extractor=processor.feature_extractor, decoder=None)
|
42 |
|
43 |
+
transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
if LANG2YDX[language]:
|
46 |
+
url = 'https://translate.yandex.ru/?lang=' + LANG2YDX[language] + '-' + LANG2YDX[lang] + '&text=' + transcription # ru-fr&text=
|
47 |
+
if lang == "Русский":
|
48 |
+
label = 'Посмотреть перевод'
|
49 |
+
else: label = 'Check the translation'
|
50 |
+
html = f'<a href="{url}" target="_blank">{label}</a>'
|
51 |
+
else: html = None
|
52 |
|
53 |
+
return transcription, html
|
54 |
|
55 |
+
|
56 |
+
def update_decoding(language):
|
57 |
+
language = RUS2ENG.get(language, language)
|
58 |
+
if MODELS[language]['has_lm']:
|
59 |
+
return gr.Radio.update(visible=True)
|
60 |
+
else: return gr.Radio.update(visible=False, value='Greedy')
|
61 |
+
|
62 |
|
63 |
+
def update_interface(lang):
|
64 |
+
if lang == 'Русский':
|
65 |
+
languages = gr.Radio.update(label='Язык записи', choices=LANGUAGES_RUS)
|
66 |
+
audio = gr.Audio.update(label='Скажите что-нибудь...')
|
67 |
+
# btn = gr.Button.update(value='Расшифровать')
|
68 |
+
decoding = gr.Radio.update(label='Тип декодирования')
|
69 |
|
70 |
+
elif lang == 'English':
|
71 |
+
languages = gr.Radio.update(label='Language', choices=LANGUAGES_ENG)
|
72 |
+
audio = gr.Audio.update(label='Say something...')
|
73 |
+
# btn = gr.Button.update(value='Transcribe')
|
74 |
+
decoding = gr.Radio.update(label='Decoding type')
|
75 |
+
|
76 |
+
return languages, audio, decoding
|
77 |
+
|
78 |
+
with gr.Blocks() as blocks:
|
79 |
+
lang = gr.Radio(label="Выберите язык интерфейса / Interface language", choices=['Русский','English'])
|
80 |
+
languages = gr.Radio(label="Language", choices=LANGUAGES_RUS)
|
81 |
+
audio = gr.Audio(source="microphone", type="filepath", label="Скажите что-нибудь...")
|
82 |
+
decoding = gr.Radio(label="Тип декодирования", choices=["Greedy", "LM"], visible=False, type='index')
|
83 |
+
btn = gr.Button('Расшифровать / Transcribe')
|
84 |
+
output = gr.Textbox(show_label=False)
|
85 |
+
|
86 |
+
translation = gr.HTML()
|
87 |
+
|
88 |
+
languages.change(fn=update_decoding, inputs=[languages], outputs=[decoding])
|
89 |
+
lang.change(fn=update_interface, inputs=[lang], outputs=[languages, audio, decoding])
|
90 |
+
btn.click(fn=run, inputs=[audio, languages, decoding, lang], outputs=[output, translation])
|
91 |
+
|
92 |
+
|
93 |
+
blocks.launch(enable_queue=True, debug=True)
|