import gradio as gr from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM MODELS = { "Tatar": {"model_id": "sammy786/wav2vec2-xlsr-tatar", "has_lm": False}, "Chuvash": {"model_id": "sammy786/wav2vec2-xlsr-chuvash", "has_lm": False}, "Bashkir": {"model_id": "AigizK/wav2vec2-large-xls-r-300m-bashkir-cv7_opt", "has_lm": True}, "Erzya": {"model_id": "DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1", "has_lm": True} } CACHED_MODELS_BY_ID = {} LANGUAGES = (MODELS.keys()) def run(input_file, language, decoding_type): #logger.info(f"Running ASR {language}-{model_size}-{decoding_type} for {input_file}") model = MODELS.get(language, None) if decoding_type == "LM" and not model["has_lm"]: history.append({ "error_message": f"LM not available for {language} language :(" }) else: # model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) model_instance = CACHED_MODELS_BY_ID.get(model["model_id"], None) if model_instance is None: model_instance = AutoModelForCTC.from_pretrained(model["model_id"]) CACHED_MODELS_BY_ID[model["model_id"]] = model_instance if decoding_type == "LM": processor = Wav2Vec2ProcessorWithLM.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder) else: processor = Wav2Vec2Processor.from_pretrained(model["model_id"]) asr = pipeline("automatic-speech-recognition", model=model_instance, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, decoder=None) transcription = asr(input_file, chunk_length_s=5, stride_length_s=1)["text"] return transcription gr.Interface( run, inputs=[ gr.Audio(source="microphone", type="filepath", label="Record something..."), gr.Radio(label="Language", choices=LANGUAGES), gr.Radio(label="Decoding type", choices=["greedy", "LM"]) # gr.inputs.Radio(label="Model size", choices=["300M", "1B"]), ], outputs=[ gr.Textbox() ], allow_screenshot=False, allow_flagging="never", theme="grass" ).launch(enable_queue=True)