"""GPT-1 and GPT-2 Text Generation demo.""" import gradio as gr from torch.cuda import is_available from transformers import OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, GPT2Tokenizer, GPT2LMHeadModel tokenizer = None model = None loaded_model = None def load_model(model_name): """Loads the model and tokenizer from HuggingFace.""" global tokenizer, model, loaded_model loaded_model = model_name huggingface_model_name = model_name.split('(')[1][:-1] if huggingface_model_name == 'openai-gpt': # GPT-1 tokenizer = OpenAIGPTTokenizer.from_pretrained(huggingface_model_name) model = OpenAIGPTLMHeadModel.from_pretrained(huggingface_model_name) else: # GPT-2 tokenizer = GPT2Tokenizer.from_pretrained(huggingface_model_name) model = GPT2LMHeadModel.from_pretrained(huggingface_model_name) # Load model in CUDA if available if is_available(): model = model.cuda() def generate(inp, model_name, temperature, top_p, rep_pty, max_length): """Generates text using the given model and parameters.""" if loaded_model != model_name: load_model(model_name) inputs = tokenizer.encode(inp, return_tensors='pt') if is_available(): inputs = inputs.cuda() outputs = model.generate(inputs, max_length=max_length, temperature=temperature, num_return_sequences=1, top_p=top_p, repetition_penalty=rep_pty) out = tokenizer.decode(outputs[0], skip_special_tokens=True) if 'GPT-1' in model_name: out = out.replace(inp.lower(), "") else: out = out.replace(inp, "") return out SAMPLE_INPUT = ( "In a shocking finding, scientists discovered a herd of unicorns living in a remote," " previously unexplored valley, in the Andes Mountains. Even more surprising to the" " researchers was the fact that the unicorns spoke perfect English." ) with gr.Blocks() as demo: gr.Markdown("# 🦄 Try GPT-1 and GPT-2") with gr.Row(): with gr.Column(scale=4): inp = gr.Textbox(label="Input text:", placeholder="Enter some text to get started.", value=SAMPLE_INPUT, lines=10) out = gr.Textbox(label="Generated text:", lines=25) with gr.Column(scale=1): with gr.Row(): model_name = gr.Dropdown(label="Select a model:", choices=['GPT-2 XL (gpt2-xl)', 'GPT-2 L (gpt2-large)', 'GPT-2 M (gpt2-medium)', 'GPT-2 S (gpt2)', 'GPT-1 (openai-gpt)'], value='GPT-2 XL (gpt2-xl)') btn_run = gr.Button("Generate") temperature = gr.Slider( label="Temperature", info=("Degree of randomness in the output, where higher values make it more unpredictable" " and creative, while lower values make it more deterministic and focused."), minimum=0.01, maximum=3.0, step=0.01, value=0.7) top_p = gr.Slider( label="Top-p", info=("If set to float < 1, only the most probable tokens with probabilities that add up" " to `top_p` or higher are kept for generation."), minimum=0.01, maximum=1.0, step=0.01, value=.9) rep_pty = gr.Slider(label="Repetition Penalty", info="Token repetition penalty. 1.0 means no penalty.", minimum=1.0, maximum=2.0, step=0.01, value=1.2) max_length = gr.Number(label="Max Length", info="The maximum length of the sequence to be generated.", minimum=1, maximum=1024, value=256, precision=0) btn_run.click(fn=generate, inputs=[inp, model_name, temperature, top_p, rep_pty, max_length], outputs=out) demo.launch()