Spaces:
Build error
Build error
import html | |
import os | |
from typing import AnyStr | |
import nltk | |
import streamlit as st | |
import validators | |
from transformers import pipeline | |
from validators import ValidationFailure | |
from Summarizer import Summarizer | |
def main() -> None: | |
nltk.download('punkt') | |
st.markdown('# Terms & Conditions Summarizer :pencil:') | |
st.markdown('Do you also always take the time out of your day to thoroughly read every word of the Terms & Conditions before signing up to an app like the responsible citizen that you are? :thinking_face:<br>' | |
'No?<br>' | |
"Well don't worry, neither do we! That's why we created a <b>Terms & Conditions Summarization</b> algorithm!", unsafe_allow_html=True) | |
st.markdown('Just copy-paste that pesky Terms & Conditions text or provide a URL to the text and let our fancy NLP algorithm do the rest!<br>' | |
'You will see both an extractive summary (the most important sentences will be highlighted) and an abstractive summary (an actual summary)<br>' | |
'The abstractive summary will give you an idea of what the key message of the document likely is :bulb:', unsafe_allow_html=True) | |
st.markdown('<b>Want to find out more?</b> :brain:<br>' | |
'For details about the extractive part :point_right: https://en.wikipedia.org/wiki/Latent_semantic_analysis<br>' | |
'For details about the abstractive part :point_right: https://huggingface.co/ml6team/distilbart-tos-summarizer-tosdr', unsafe_allow_html=True) | |
def create_pipeline(): | |
with st.spinner('Please wait for the model to load...'): | |
terms_and_conditions_pipeline = pipeline( | |
task='summarization', | |
model='ml6team/distilbart-tos-summarizer-tosdr', | |
tokenizer='ml6team/distilbart-tos-summarizer-tosdr' | |
) | |
return terms_and_conditions_pipeline | |
def display_abstractive_summary(summary_sentences: list) -> None: | |
st.subheader("Abstractive Summary") | |
st.markdown('#####') | |
for sentence in summary_sentences: | |
st.markdown(f"- {sentence}", unsafe_allow_html=True) | |
def display_extractive_summary(terms_and_conditions_text: str, summary_sentences: list) -> None: | |
st.subheader("Extractive Summary") | |
st.markdown('#####') | |
replaced_text = html.escape(terms_and_conditions_text) | |
for sentence in summary_sentences: | |
sentence = html.escape(sentence) | |
replaced_text = replaced_text.replace(sentence, sentence) | |
replaced_text = replaced_text.replace('\n', '<br/>') | |
with st.container(): | |
st.markdown(replaced_text, unsafe_allow_html=True) | |
def is_valid_url(url: str) -> bool: | |
result = validators.url(url) | |
if isinstance(result, ValidationFailure): | |
return False | |
return True | |
def list_all_filenames() -> list: | |
filenames = [] | |
for file in os.listdir('./sample-terms-and-conditions/'): | |
if file.endswith('.txt'): | |
filenames.append(file.replace('.txt', '')) | |
return filenames | |
def fetch_file_contents(filename: str) -> AnyStr: | |
with open(f'./sample-terms-and-conditions/{filename.lower()}.txt', 'r') as f: | |
data = f.read() | |
return data | |
summarizer: Summarizer = Summarizer(create_pipeline()) | |
if 'tc_text' not in st.session_state: | |
st.session_state['tc_text'] = '' | |
if 'sentences_length' not in st.session_state: | |
st.session_state['sentences_length'] = Summarizer.DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH | |
if 'sample_choice' not in st.session_state: | |
st.session_state['sample_choice'] = '' | |
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True) | |
st.header("Input") | |
sentences_length = st.number_input( | |
label='Number of sentences to be extracted:', | |
min_value=5, | |
max_value=15, | |
value=st.session_state.sentences_length | |
) | |
sample_choice = st.selectbox( | |
'Choose a sample terms & conditions:', | |
list_all_filenames()) | |
st.session_state.tc_text = fetch_file_contents(sample_choice) | |
tc_text_input = st.text_area( | |
value=st.session_state.tc_text, | |
label='Terms & conditions content or specify an URL:', | |
height=240 | |
) | |
summarize_button = st.button(label='Summarize') | |
def abstractive_summary_from_cache(summary_sentences: tuple) -> tuple: | |
with st.spinner('Summarizing the text is in progress...'): | |
return tuple(summarizer.abstractive_summary(list(summary_sentences))) | |
if summarize_button: | |
if is_valid_url(tc_text_input): | |
extract_summary_sentences = summarizer.extractive_summary_from_url(tc_text_input, sentences_length) | |
else: | |
extract_summary_sentences = summarizer.extractive_summary_from_text(tc_text_input, sentences_length) | |
extract_summary_sentences_tuple = tuple(extract_summary_sentences) | |
abstract_summary_tuple = abstractive_summary_from_cache(extract_summary_sentences_tuple) | |
abstract_summary_list = list(abstract_summary_tuple) | |
display_abstractive_summary(abstract_summary_list) | |
display_extractive_summary(tc_text_input, extract_summary_sentences) | |
if __name__ == "__main__": | |
main() | |