sdhanabal1's picture
Test html rendering error
aa506d0
raw
history blame
5.82 kB
import html
import os
from typing import AnyStr
import nltk
import streamlit as st
import validators
from transformers import pipeline
from validators import ValidationFailure
from Summarizer import Summarizer
def main() -> None:
nltk.download('punkt')
st.markdown('# Terms & Conditions Summarizer :pencil:')
st.markdown('Do you also always take the time out of your day to thoroughly read every word of the Terms & Conditions before signing up to an app like the responsible citizen that you are? :thinking_face:<br>'
'No?<br>'
"Well don't worry, neither do we! That's why we created a <b>Terms & Conditions Summarization</b> algorithm!", unsafe_allow_html=True)
st.markdown('Just copy-paste that pesky Terms & Conditions text or provide a URL to the text and let our fancy NLP algorithm do the rest!<br>'
'You will see both an extractive summary (the most important sentences will be highlighted) and an abstractive summary (an actual summary)<br>'
'The abstractive summary will give you an idea of what the key message of the document likely is :bulb:', unsafe_allow_html=True)
st.markdown('<b>Want to find out more?</b> :brain:<br>'
'For details about the extractive part :point_right: https://en.wikipedia.org/wiki/Latent_semantic_analysis<br>'
'For details about the abstractive part :point_right: https://huggingface.co/ml6team/distilbart-tos-summarizer-tosdr', unsafe_allow_html=True)
@st.cache(allow_output_mutation=True,
suppress_st_warning=True,
show_spinner=False)
def create_pipeline():
with st.spinner('Please wait for the model to load...'):
terms_and_conditions_pipeline = pipeline(
task='summarization',
model='ml6team/distilbart-tos-summarizer-tosdr',
tokenizer='ml6team/distilbart-tos-summarizer-tosdr'
)
return terms_and_conditions_pipeline
def display_abstractive_summary(summary_sentences: list) -> None:
st.subheader("Abstractive Summary")
st.markdown('#####')
for sentence in summary_sentences:
st.markdown(f"- {sentence}", unsafe_allow_html=True)
def display_extractive_summary(terms_and_conditions_text: str, summary_sentences: list) -> None:
st.subheader("Extractive Summary")
st.markdown('#####')
replaced_text = html.escape(terms_and_conditions_text)
for sentence in summary_sentences:
sentence = html.escape(sentence)
replaced_text = replaced_text.replace(sentence, sentence)
replaced_text = replaced_text.replace('\n', '<br/>')
with st.container():
st.markdown(replaced_text, unsafe_allow_html=True)
def is_valid_url(url: str) -> bool:
result = validators.url(url)
if isinstance(result, ValidationFailure):
return False
return True
def list_all_filenames() -> list:
filenames = []
for file in os.listdir('./sample-terms-and-conditions/'):
if file.endswith('.txt'):
filenames.append(file.replace('.txt', ''))
return filenames
def fetch_file_contents(filename: str) -> AnyStr:
with open(f'./sample-terms-and-conditions/{filename.lower()}.txt', 'r') as f:
data = f.read()
return data
summarizer: Summarizer = Summarizer(create_pipeline())
if 'tc_text' not in st.session_state:
st.session_state['tc_text'] = ''
if 'sentences_length' not in st.session_state:
st.session_state['sentences_length'] = Summarizer.DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH
if 'sample_choice' not in st.session_state:
st.session_state['sample_choice'] = ''
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True)
st.header("Input")
sentences_length = st.number_input(
label='Number of sentences to be extracted:',
min_value=5,
max_value=15,
value=st.session_state.sentences_length
)
sample_choice = st.selectbox(
'Choose a sample terms & conditions:',
list_all_filenames())
st.session_state.tc_text = fetch_file_contents(sample_choice)
tc_text_input = st.text_area(
value=st.session_state.tc_text,
label='Terms & conditions content or specify an URL:',
height=240
)
summarize_button = st.button(label='Summarize')
@st.cache(suppress_st_warning=True,
show_spinner=False,
allow_output_mutation=True,
hash_funcs={"torch.nn.parameter.Parameter": lambda _: None,
"tokenizers.Tokenizer": lambda _: None,
"tokenizers.AddedToken": lambda _: None,
})
def abstractive_summary_from_cache(summary_sentences: tuple) -> tuple:
with st.spinner('Summarizing the text is in progress...'):
return tuple(summarizer.abstractive_summary(list(summary_sentences)))
if summarize_button:
if is_valid_url(tc_text_input):
extract_summary_sentences = summarizer.extractive_summary_from_url(tc_text_input, sentences_length)
else:
extract_summary_sentences = summarizer.extractive_summary_from_text(tc_text_input, sentences_length)
extract_summary_sentences_tuple = tuple(extract_summary_sentences)
abstract_summary_tuple = abstractive_summary_from_cache(extract_summary_sentences_tuple)
abstract_summary_list = list(abstract_summary_tuple)
display_abstractive_summary(abstract_summary_list)
display_extractive_summary(tc_text_input, extract_summary_sentences)
if __name__ == "__main__":
main()