import nltk import streamlit as st import validators from transformers import pipeline from validators import ValidationFailure from Summarizer import Summarizer def main() -> None: nltk.download('punkt') st.markdown('# Terms & conditions summarization :pencil:') st.markdown(""" Do you also take the time out of your day to thoroughly read every word of the Terms & Conditions before signing up for a new app? :thinking_face: No? Well have we got a demo for you! Just copy-paste the lengthy Terms & Conditions text or provide a URL to the text and let our fancy NLP algorithm do the rest! You will see both an extractive summary (the most important sentences will be highlighted) and an abstractive summary (an actual summary) """, unsafe_allow_html=True) st.markdown('Want to find out more?
' 'For information about the extractive summarization :point_right: https://en.wikipedia.org/wiki/Latent_semantic_analysis
' 'For information about the abstractive summarization :point_right: https://huggingface.co/ml6team/distilbart-tos-summarizer-tosdr', unsafe_allow_html=True) st.markdown(""" How to use summarizer: - Specify an URL to extract contents OR copy terms & conditions content and hit 'Summarize' """) @st.cache(allow_output_mutation=True, suppress_st_warning=True, show_spinner=False) def create_pipeline(): with st.spinner('Please wait for the model to load...'): terms_and_conditions_pipeline = pipeline( task='summarization', model='ml6team/distilbart-tos-summarizer-tosdr', tokenizer='ml6team/distilbart-tos-summarizer-tosdr' ) return terms_and_conditions_pipeline def display_abstractive_summary(summary) -> None: st.subheader("Abstractive Summary") st.markdown('#####') st.markdown(summary) def display_extractive_summary(terms_and_conditions_sentences: list, summary_sentences: list) -> None: st.subheader("Extractive Summary") st.markdown('#####') terms_and_conditions = " ".join(sentence for sentence in terms_and_conditions_sentences) replaced_text = terms_and_conditions for sentence in summary_sentences: replaced_text = replaced_text.replace(sentence, f"{sentence}") st.write(replaced_text, unsafe_allow_html=True) def is_valid_url(url: str) -> bool: result = validators.url(url) if isinstance(result, ValidationFailure): return False return True summarizer: Summarizer = Summarizer(create_pipeline()) if 'tc_text' not in st.session_state: st.session_state['tc_text'] = '' if 'sentences_length' not in st.session_state: st.session_state['sentences_length'] = Summarizer.DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH st.write('', unsafe_allow_html=True) st.header("Input") with st.form(key='terms-and-conditions'): sentences_length_input = st.number_input( label='Number of sentences to be extracted:', min_value=1, value=st.session_state.sentences_length ) tc_text_input = st.text_area( value=st.session_state.tc_text, label='Terms & conditions content or specify an URL:', height=240 ) submit_button = st.form_submit_button(label='Summarize') if submit_button: if is_valid_url(tc_text_input): (all_sentences, extract_summary_sentences) = summarizer.extractive_summary_from_url(tc_text_input, sentences_length_input) else: (all_sentences, extract_summary_sentences) = summarizer.extractive_summary_from_text(tc_text_input, sentences_length_input) extract_summary = " ".join([sentence for sentence in extract_summary_sentences]) abstract_summary = summarizer.abstractive_summary(extract_summary) display_extractive_summary(all_sentences, extract_summary_sentences) display_abstractive_summary(abstract_summary) if __name__ == "__main__": main()