File size: 25,317 Bytes
065051d 76254b2 08e0095 76254b2 25d9773 305fb83 08e0095 76254b2 f51bffc 305fb83 76254b2 065051d 76254b2 b59fcf5 76254b2 32e1bb2 937ed20 1f3c19d 48836d3 edba6fe 32e1bb2 edba6fe 6b6c0db edba6fe 1f3c19d 6b6c0db 76254b2 d09f003 08e0095 76254b2 cf834f9 76254b2 f51bffc 8545c27 b59fcf5 08e0095 b59fcf5 d09f003 6b6c0db b59fcf5 f51bffc 8545c27 065051d 6b6c0db 48836d3 8545c27 f51bffc 8545c27 48836d3 b59fcf5 76254b2 f51bffc 357d42c 48836d3 357d42c 48836d3 357d42c 1f3c19d 48836d3 6b6c0db 079ef2d 1f3c19d 6b6c0db 357d42c f51bffc 357d42c f51bffc 08e0095 f51bffc 08e0095 f51bffc 08e0095 d09f003 1f3c19d 08e0095 48836d3 f51bffc 6b6c0db 08e0095 f51bffc 305fb83 065051d 305fb83 f51bffc 48836d3 f51bffc 6b6c0db f51bffc 48836d3 08e0095 f51bffc 08e0095 f51bffc 6b6c0db f51bffc 08e0095 f51bffc 357d42c 08e0095 f51bffc 08e0095 f51bffc 357d42c f51bffc 357d42c f51bffc 08e0095 357d42c 08e0095 357d42c f51bffc 357d42c 6b6c0db d09f003 6b6c0db d09f003 6b6c0db d09f003 6b6c0db d09f003 6b6c0db 065051d 2c184b3 1f3c19d 3ae9358 065051d edba6fe 48836d3 08e0095 d09f003 08e0095 d09f003 08e0095 48836d3 08e0095 48836d3 08e0095 48836d3 08e0095 48836d3 d09f003 6b6c0db 48836d3 065051d 48836d3 d09f003 065051d 48836d3 6b6c0db d09f003 065051d 6b6c0db 065051d 6b6c0db 48836d3 1f3c19d 6b6c0db 48836d3 6b6c0db 48836d3 6b6c0db d09f003 48836d3 d09f003 6b6c0db 48836d3 6b6c0db 48836d3 065051d 6b6c0db 48836d3 d09f003 6b6c0db 48836d3 d09f003 6b6c0db 48836d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
from typing import AnyStr, Dict
import itertools
import streamlit as st
import en_core_web_lg
import torch.nn.parameter
from bs4 import BeautifulSoup
import numpy as np
import base64
from spacy_streamlit.util import get_svg
from custom_renderer import render_sentence_custom
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
import os
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem;
margin-bottom: 2.5rem">{}</div> """
@st.experimental_singleton
def get_sentence_embedding_model():
return SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
@st.experimental_singleton
def get_spacy():
nlp = en_core_web_lg.load()
return nlp
@st.experimental_singleton
def get_transformer_pipeline():
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english")
return pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
@st.experimental_singleton
def get_summarizer_model():
model_name = 'google/pegasus-cnn_dailymail'
summarizer_model = pipeline("summarization", model=model_name, tokenizer=model_name,
device=0 if torch.cuda.is_available() else -1)
return summarizer_model
# Page setup
st.set_page_config(
page_title="📜 Post-processing summarization fact checker 📜",
page_icon="",
layout="centered",
initial_sidebar_state="auto",
menu_items={
'Get help': None,
'Report a bug': None,
'About': None,
}
)
def list_all_article_names() -> list:
filenames = []
for file in sorted(os.listdir('./sample-articles/')):
if file.endswith('.txt'):
filenames.append(file.replace('.txt', ''))
# Append free use possibility:
filenames.append("Provide your own input")
return filenames
def fetch_article_contents(filename: str) -> AnyStr:
if filename == "Provide your own input":
return " "
with open(f'./sample-articles/{filename}.txt', 'r') as f:
data = f.read()
return data
def fetch_summary_contents(filename: str) -> AnyStr:
with open(f'./sample-summaries/{filename}.txt', 'r') as f:
data = f.read()
return data
def fetch_entity_specific_contents(filename: str) -> AnyStr:
with open(f'./entity-specific-text/{filename}.txt', 'r') as f:
data = f.read()
return data
def fetch_dependency_specific_contents(filename: str) -> AnyStr:
with open(f'./dependency-specific-text/{filename}.txt', 'r') as f:
data = f.read()
return data
def fetch_dependency_svg(filename: str) -> AnyStr:
with open(f'./dependency-images/{filename}.txt', 'r') as f:
lines = [line.rstrip() for line in f]
return lines
def display_summary(summary_content: str):
st.session_state.summary_output = summary_content
soup = BeautifulSoup(summary_content, features="html.parser")
return HTML_WRAPPER.format(soup)
def get_all_entities_per_sentence(text):
doc = nlp(text)
sentences = list(doc.sents)
entities_all_sentences = []
for sentence in sentences:
entities_this_sentence = []
# SPACY ENTITIES
for entity in sentence.ents:
entities_this_sentence.append(str(entity))
# FLAIR ENTITIES (CURRENTLY NOT USED)
# sentence_entities = Sentence(str(sentence))
# tagger.predict(sentence_entities)
# for entity in sentence_entities.get_spans('ner'):
# entities_this_sentence.append(entity.text)
# XLM ENTITIES
entities_xlm = [entity["word"] for entity in ner_model(str(sentence))]
for entity in entities_xlm:
entities_this_sentence.append(str(entity))
entities_all_sentences.append(entities_this_sentence)
return entities_all_sentences
def get_all_entities(text):
all_entities_per_sentence = get_all_entities_per_sentence(text)
return list(itertools.chain.from_iterable(all_entities_per_sentence))
def get_and_compare_entities(first_time: bool):
if first_time:
article_content = st.session_state.article_text
all_entities_per_sentence = get_all_entities_per_sentence(article_content)
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence))
st.session_state.entities_article = entities_article
else:
entities_article = st.session_state.entities_article
summary_content = st.session_state.summary_output
all_entities_per_sentence = get_all_entities_per_sentence(summary_content)
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence))
matched_entities = []
unmatched_entities = []
for entity in entities_summary:
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article):
matched_entities.append(entity)
elif any(
np.inner(sentence_embedding_model.encode(entity, show_progress_bar=False),
sentence_embedding_model.encode(art_entity, show_progress_bar=False)) > 0.9 for
art_entity in entities_article):
matched_entities.append(entity)
else:
unmatched_entities.append(entity)
matched_entities = list(dict.fromkeys(matched_entities))
unmatched_entities = list(dict.fromkeys(unmatched_entities))
for entity in matched_entities:
for substring_entity in matched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
matched_entities.remove(entity)
for entity in unmatched_entities:
for substring_entity in unmatched_entities:
if entity != substring_entity and entity.lower() in substring_entity.lower():
unmatched_entities.remove(entity)
return matched_entities, unmatched_entities
def highlight_entities():
summary_content = st.session_state.summary_output
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
markdown_end = "</mark>"
matched_entities, unmatched_entities = get_and_compare_entities(True)
for entity in matched_entities:
summary_content = summary_content.replace(entity, markdown_start_green + entity + markdown_end)
for entity in unmatched_entities:
summary_content = summary_content.replace(entity, markdown_start_red + entity + markdown_end)
soup = BeautifulSoup(summary_content, features="html.parser")
return HTML_WRAPPER.format(soup)
def render_dependency_parsing(text: Dict):
html = render_sentence_custom(text, nlp)
html = html.replace("\n\n", "\n")
st.write(get_svg(html), unsafe_allow_html=True)
def check_dependency(article: bool):
if article:
text = st.session_state.article_text
all_entities = get_all_entities_per_sentence(text)
else:
text = st.session_state.summary_output
all_entities = get_all_entities_per_sentence(text)
doc = nlp(text)
tok_l = doc.to_json()['tokens']
test_list_dict_output = []
sentences = list(doc.sents)
for i, sentence in enumerate(sentences):
start_id = sentence.start
end_id = sentence.end
for t in tok_l:
if t["id"] < start_id or t["id"] > end_id:
continue
head = tok_l[t['head']]
if t['dep'] == 'amod' or t['dep'] == "pobj":
object_here = text[t['start']:t['end']]
object_target = text[head['start']:head['end']]
if t['dep'] == "pobj" and str.lower(object_target) != "in":
continue
# ONE NEEDS TO BE ENTITY
if object_here in all_entities[i]:
identifier = object_here + t['dep'] + object_target
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
"target_word_index": (t['head'] - sentence.start),
"identifier": identifier, "sentence": str(sentence)})
elif object_target in all_entities[i]:
identifier = object_here + t['dep'] + object_target
test_list_dict_output.append({"dep": t['dep'], "cur_word_index": (t['id'] - sentence.start),
"target_word_index": (t['head'] - sentence.start),
"identifier": identifier, "sentence": str(sentence)})
else:
continue
return test_list_dict_output
def render_svg(svg_file):
with open(svg_file, "r") as f:
lines = f.readlines()
svg = "".join(lines)
# """Renders the given svg string."""
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
return html
def generate_abstractive_summary(text, type, min_len=120, max_len=512, **kwargs):
text = text.strip().replace("\n", " ")
if type == "top_p":
text = summarization_model(text, min_length=min_len,
max_length=max_len,
top_k=50, top_p=0.95, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
elif type == "greedy":
text = summarization_model(text, min_length=min_len,
max_length=max_len, clean_up_tokenization_spaces=True, truncation=True, **kwargs)
elif type == "top_k":
text = summarization_model(text, min_length=min_len, max_length=max_len, top_k=50,
clean_up_tokenization_spaces=True, truncation=True, **kwargs)
elif type == "beam":
text = summarization_model(text, min_length=min_len,
max_length=max_len,
clean_up_tokenization_spaces=True, truncation=True, **kwargs)
summary = text[0]['summary_text'].replace("<n>", " ")
return summary
# Load all different models (cached) at start time of the hugginface space
sentence_embedding_model = get_sentence_embedding_model()
ner_model = get_transformer_pipeline()
nlp = get_spacy()
summarization_model = get_summarizer_model()
# Page
st.title('📜 Summarization fact checker 📜')
# INTRODUCTION
st.header("🧑🏫 Introduction")
introduction_checkbox = st.checkbox("Show introduction text", value = True)
if introduction_checkbox:
st.markdown("""
Recent work using 🤖 **transformers** 🤖 on large text corpora has shown great success when fine-tuned on
several different downstream NLP tasks. One such task is that of text summarization. The goal of text summarization
is to generate concise and accurate summaries from input document(s). There are 2 types of summarization:
- **Extractive summarization** merely copies informative fragments from the input
- **Abstractive summarization** may generate novel words. A good abstractive summary should cover principal
information in the input and has to be linguistically fluent. This interactive blogpost will focus on this more difficult task of
abstractive summary generation. Furthermore we will focus on factual errors in summaries, and less sentence fluency.""")
st.markdown("###")
st.markdown("🤔 **Why is this important?** 🤔 Let's say we want to summarize news articles for a popular "
"newspaper. If an article tells the story of **Putin** invading Ukraine, we don't want our summarization "
"model to say that **Biden** is invading Ukraine. Summarization could also be done for financial reports "
"for example. In such environments, these errors can be very critical, so we want to find a way to "
"detect them.")
st.markdown("###")
st.markdown("""To generate summaries we will use the 🐎 [PEGASUS](https://huggingface.co/google/pegasus-cnn_dailymail) 🐎
model, producing abstractive summaries from large articles. These summaries often contain sentences with different
kinds of errors. Rather than improving the core model, we will look into possible post-processing steps to detect errors
from the generated summaries. Throughout this blog, we will also explain the results for some methods on specific
examples. These text blocks will be indicated and they change according to the currently selected article.""")
# GENERATING SUMMARIES PART
st.header("🪶 Generating summaries")
st.markdown("Let’s start by selecting an article text for which we want to generate a summary, or you can provide "
"text yourself. Note that it’s suggested to provide a sufficiently large article, as otherwise the "
"summary generated from it might not be optimal, leading to suboptimal performance of the post-processing "
"steps. However, too long articles will be truncated and might miss information in the summary.")
st.markdown("####")
selected_article = st.selectbox('Select an article or provide your own:',
list_all_article_names(), index=2)
st.session_state.article_text = fetch_article_contents(selected_article)
article_text = st.text_area(
label='Full article text',
value=st.session_state.article_text,
height=250
)
summarize_button = st.button(label='🤯 Process article content',
help="Start interactive blogpost")
if summarize_button:
st.session_state.article_text = article_text
st.markdown("####")
st.markdown(
"*Below you can find the generated summary for the article. We will discuss two approaches that we found are "
"able to detect some common errors. Based on errors, one could then score different summaries, indicating how "
"factual a summary is for a given article. The idea is that in production, you could generate a set of "
"summaries for the same article, with different parameters (or even different models). By using "
"post-processing error detection, we can then select the best possible summary.*")
if st.session_state.article_text:
with st.spinner('Generating summary, this might take a while...'):
if selected_article != "Provide your own input" and article_text == fetch_article_contents(
selected_article):
st.session_state.unchanged_text = True
summary_content = fetch_summary_contents(selected_article)
else:
summary_content = generate_abstractive_summary(article_text, type="beam", do_sample=True, num_beams=15,
no_repeat_ngram_size=4)
st.session_state.unchanged_text = False
summary_displayed = display_summary(summary_content)
st.write("✍ **Generated summary:** ✍", summary_displayed, unsafe_allow_html=True)
else:
st.error('**Error**: No comment to classify. Please provide a comment.')
# ENTITY MATCHING PART
st.header("1️⃣ Entity matching")
st.markdown("The first method we will discuss is called **Named Entity Recognition** (NER). NER is the task of "
"identifying and categorising key information (entities) in text. An entity can be a singular word or a "
"series of words that consistently refers to the same thing. Common entity classes are person names, "
"organisations, locations and so on. By applying NER to both the article and its summary, we can spot "
"possible **hallucinations**. ")
st.markdown("Hallucinations are words generated by the model that are not supported by "
"the source input. Deep learning based generation is [prone to hallucinate]("
"https://arxiv.org/pdf/2202.03629.pdf) unintended text. These hallucinations degrade "
"system performance and fail to meet user expectations in many real-world scenarios. By applying entity matching, we can improve this problem"
" for the downstream task of summary generation.")
st.markdown(" In theory all entities in the summary (such as dates, locations and so on), "
"should also be present in the article. Thus we can extract all entities from the summary and compare "
"them to the entities of the original article, spotting potential hallucinations. The more unmatched "
"entities we find, the lower the factualness score of the summary. ")
with st.spinner("Calculating and matching entities..."):
entity_match_html = highlight_entities()
st.write(entity_match_html, unsafe_allow_html=True)
red_text = """<font color="black"><span style="background-color: rgb(238, 135, 135); opacity:
1;">red</span></font> """
green_text = """<font color="black">
<span style="background-color: rgb(121, 236, 121); opacity: 1;">green</span>
</font>"""
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">"
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">"
st.markdown(
"We call this technique **entity matching** and here you can see what this looks like when we apply this "
"method on the summary. Entities in the summary are marked " + green_text + " when the entity also "
"exists in the article, "
"while unmatched entities "
"are marked " + red_text +
". Several of the example articles and their summaries indicate different errors we find by using this "
"technique. Based on the current article, we provide a short explanation of the results below **(only for "
"example articles)**. ", unsafe_allow_html=True)
if st.session_state.unchanged_text:
entity_specific_text = fetch_entity_specific_contents(selected_article)
soup = BeautifulSoup(entity_specific_text, features="html.parser")
st.markdown("####")
st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)
# DEPENDENCY PARSING PART
st.header("2️⃣ Dependency comparison")
st.markdown(
"The second method we use for post-processing is called **Dependency parsing**: the process in which the "
"grammatical structure in a sentence is analysed, to find out related words as well as the type of the "
"relationship between them. For the sentence “Jan’s wife is called Sarah” you would get the following "
"dependency graph:")
# TODO: I wonder why the first doesn't work but the second does (it doesn't show deps otherwise)
# st.image("ExampleParsing.svg")
st.write(render_svg('ExampleParsing.svg'), unsafe_allow_html=True)
st.markdown(
"Here, *“Jan”* is the *“poss”* (possession modifier) of *“wife”*. If suddenly the summary would read *“Jan’s"
" husband…”*, there would be a dependency in the summary that is non-existent in the article itself (namely "
"*“Jan”* is the “poss” of *“husband”*)."
"However, often new dependencies are introduced in the summary that "
"are still correct, as can be seen in the example below. ")
st.write(render_svg('SecondExampleParsing.svg'), unsafe_allow_html=True)
st.markdown("*“The borders of Ukraine”* have a different dependency between *“borders”* and "
"*“Ukraine”* "
"than *“Ukraine’s borders”*, while both descriptions have the same meaning. So just matching all "
"dependencies between article and summary (as we did with entity matching) would not be a robust method."
" More on the different sorts of dependencies and their description can be found [here](https://universaldependencies.org/docs/en/dep/).")
st.markdown("However, we have found that **there are specific dependencies that are often an "
"indication of a wrongly constructed sentence** -when there is no article match. We (currently) use 2 "
"common dependencies which - when present in the summary but not in the article - are highly "
"indicative of factualness errors. "
"Furthermore, we only check dependencies between an existing **entity** and its direct connections. "
"Below we highlight all unmatched dependencies that satisfy the discussed constraints. We also "
"discuss the specific results for the currently selected example article.")
with st.spinner("Doing dependency parsing..."):
if st.session_state.unchanged_text:
for cur_svg_image in fetch_dependency_svg(selected_article):
st.write(cur_svg_image, unsafe_allow_html=True)
dep_specific_text = fetch_dependency_specific_contents(selected_article)
soup = BeautifulSoup(dep_specific_text, features="html.parser")
st.write("💡👇 **Specific example explanation** 👇💡", HTML_WRAPPER.format(soup), unsafe_allow_html=True)
else:
summary_deps = check_dependency(False)
article_deps = check_dependency(True)
total_unmatched_deps = []
for summ_dep in summary_deps:
if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
total_unmatched_deps.append(summ_dep)
if total_unmatched_deps:
for current_drawing_list in total_unmatched_deps:
render_dependency_parsing(current_drawing_list)
# OUTRO/CONCLUSION
st.header("🤝 Bringing it together")
st.markdown("We have presented 2 methods that try to detect errors in summaries via post-processing steps. Entity "
"matching can be used to solve hallucinations, while dependency comparison can be used to filter out "
"some bad sentences (and thus worse summaries). These methods highlight the possibilities of "
"post-processing AI-made summaries, but are only a first introduction. As the methods were "
"empirically tested they are definitely not sufficiently robust for general use-cases.")
st.markdown("####")
st.markdown(
"(TODO) Below we generated 5 different kind of summaries from the article in which their ranks are estimated, "
"and hopefully the best summary (read: the one that a human would prefer or indicate as the best one) "
"will be at the top. TODO: implement this (at the end I think) and also put something in the text with "
"the actual parameters or something? ")
# with st.spinner("Calculating more summaries and scoring them, might take while..."):
# # ENTITIES
# _, amount_unmatched = get_and_compare_entities(False)
# st.write(len(amount_unmatched))
# st.write(amount_unmatched)
#
# # DEPS
# summary_deps = check_dependency(False)
# article_deps = check_dependency(True)
# total_unmatched_deps = []
# for summ_dep in summary_deps:
# if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
# total_unmatched_deps.append(summ_dep)
#
# st.write(len(total_unmatched_deps))
# st.write(total_unmatched_deps)
#
# # FOR NEW GENERATED SUMMARY
# st.session_state.summary_output = generate_abstractive_summary(st.session_state.article_text,
# type="beam",
# do_sample=True, num_beams=15,
# no_repeat_ngram_size=5)
# _, amount_unmatched = get_and_compare_entities(False)
# st.write(len(amount_unmatched))
# st.write(amount_unmatched)
#
# summary_deps = check_dependency(False)
# article_deps = check_dependency(True)
# total_unmatched_deps = []
# for summ_dep in summary_deps:
# if not any(summ_dep['identifier'] in art_dep['identifier'] for art_dep in article_deps):
# total_unmatched_deps.append(summ_dep)
#
# st.write(len(total_unmatched_deps))
# st.write(total_unmatched_deps)
|