File size: 26,679 Bytes
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
c56d4e4
 
cf7b765
 
 
1685c73
cf7b765
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
c56d4e4
 
 
cf7b765
 
 
 
 
 
 
 
 
 
c56d4e4
cf7b765
 
c56d4e4
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1829929
cf7b765
 
 
 
0ddc36e
cf7b765
 
 
 
 
 
0ddc36e
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
0ddc36e
cf7b765
c56d4e4
cf7b765
 
 
 
1685c73
cf7b765
1685c73
cf7b765
 
 
c56d4e4
cf7b765
0ddc36e
cf7b765
 
 
 
 
1685c73
cf7b765
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
1685c73
 
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddc36e
 
cf7b765
 
 
 
 
 
 
 
 
0ddc36e
cf7b765
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddc36e
 
cf7b765
 
 
 
 
 
 
 
1685c73
cf7b765
1685c73
cf7b765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ddc36e
cf7b765
 
 
 
 
 
1685c73
cf7b765
1685c73
cf7b765
 
 
 
c56d4e4
cf7b765
 
1685c73
c56d4e4
0ddc36e
 
1685c73
 
0ddc36e
 
1685c73
 
c56d4e4
1685c73
c56d4e4
 
 
1685c73
 
 
 
 
 
 
 
 
 
 
 
c56d4e4
1685c73
 
 
b9307a8
 
1685c73
 
 
 
 
 
cf7b765
b9307a8
cf7b765
1685c73
 
 
 
 
 
b9307a8
cf7b765
 
c56d4e4
b9307a8
 
 
 
 
 
 
 
cf7b765
 
 
1685c73
c56d4e4
 
1685c73
c56d4e4
 
cf7b765
b9307a8
1685c73
 
 
 
 
cf7b765
 
c56d4e4
 
1685c73
 
c56d4e4
 
 
 
1685c73
 
c56d4e4
 
cf7b765
 
 
 
1685c73
cf7b765
 
 
1685c73
 
cf7b765
 
b9307a8
cf7b765
 
 
c56d4e4
 
cf7b765
1685c73
b9307a8
 
 
 
1685c73
cf7b765
 
 
 
1685c73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
"""Demo UI to show different levels of LLM security."""

import re

import pandas as pd
from llm_guard.input_scanners import PromptInjection
import streamlit as st

import config
import utils
import llm
from card import card


hint_color = "rgba(225, 166, 28, 0.1)"
info_color = "rgba(54, 225, 28, 0.1)"

# init page
st.set_page_config(
    page_title="Secret agent LLM challenge",
    layout="wide",
    initial_sidebar_state="expanded",
)

st.logo("images/ML6_logo.png")
st.title("🕵️ Secret agent LLM challenge")
st.info(
    "You are a secret agent meeting your informant in a bar. Convince him to give you his secret! But be prepared, with every new level the informant will be more cautious.",
    icon="📖",
)

# create a tab for each level
level_tabs = st.tabs([f"Level {i}" for i in range(len(config.LEVELS))])


def init_session_state(state_level: str, default_value: any):
    if state_level not in st.session_state:
        st.session_state[state_level] = default_value


for idx, level in enumerate(config.LEVELS):
    secret = config.SECRETS[idx]

    # init states
    init_session_state(f"solved_{level}", False)
    init_session_state(f"prompt_try_count_{level}", 0)
    init_session_state(f"secret_guess_count_{level}", 0)
    init_session_state(f"intermediate_output_holder_{level}", None)
    init_session_state(f"show_benefits_drawbacks_{level}", False)

    # init hint expander status
    for i in range(4):
        init_session_state(f"opened_hint_{level}_{i}", False)

    with level_tabs[idx]:
        header_col1, header_col2 = st.columns(2, gap="medium")
        header_col1.subheader(f"{config.LEVEL_EMOJIS[idx]} Level {idx}")
        header_col2.subheader(f"Need help ...")

        col1, col2 = st.columns(2, gap="medium")

        with col1:
            with st.container(height=600, border=False):
                with st.container(border=True):
                    txt = st.text_area(
                        "Provide your prompt here:",
                        key=f"txt_{level}",
                        label_visibility="visible",
                        height=200,
                        placeholder="Your prompt",
                        max_chars=config.MAX_INPUT_CHARS,
                    )
                    btn_submit_prompt = st.button(
                        "Send prompt", key=f"submit_prompt_{level}"
                    )
                    output = None
                    # Show response
                    if len(txt) > 0 and btn_submit_prompt:
                        st.session_state[f"prompt_try_count_{level}"] += 1
                        with st.container(border=True):
                            st.write("Response:")
                            # special checks for certain levels

                            if level == "llm_judge_input":
                                invalid, output_raw = llm.run_judge(
                                    level, {"user_input": txt}
                                )
                                # save to state, so it can be shown in hint
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = (invalid, output_raw)
                                if invalid:
                                    st.error(
                                        "Malicious user input detected. Try again."
                                    )
                                else:
                                    st.write_stream(
                                        llm.stream_request(level, secret, txt)
                                    )

                            elif level == "basic_check_secret_in_output":
                                output = "".join(llm.stream_request(level, secret, txt))
                                invalid = secret.lower() in output.lower()
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = invalid
                                if invalid:
                                    st.error(
                                        "Secret detected in user input. Try again."
                                    )
                                else:
                                    st.write(output)
                            elif level == "advanced_check_secret_in_output":
                                output = "".join(llm.stream_request(level, secret, txt))
                                invalid = utils.is_subsequence(output, secret)
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = invalid
                                if invalid:
                                    st.error(
                                        "Secret detected in user input. Try again."
                                    )
                                else:
                                    st.write(output)

                            elif level == "llm_judge_output":
                                output = "".join(llm.stream_request(level, secret, txt))
                                invalid, output_raw = llm.run_judge(
                                    level, {"secret": secret, "message": output}
                                )
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = (invalid, output_raw)
                                if invalid:
                                    st.error(
                                        "Secret detected in user input. Try again."
                                    )
                                else:
                                    st.write(output)
                            elif level == "chain_of_thought":
                                output = "".join(llm.stream_request(level, secret, txt))
                                # extract only answer from LLM, leave out the reasoning
                                new_output = re.findall(
                                    r"(?:<ANSWER>)([^;]*)(?:<\/ANSWER>)", output
                                )[0]
                                st.write(new_output)
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = output
                            elif level == "guard_framework":
                                # check prompt
                                is_valid, risk_score = utils.is_malicious(txt)
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = (is_valid, risk_score)
                                if not is_valid:
                                    st.error(
                                        "Malicious user input detected. Try again."
                                    )
                                else:
                                    st.write_stream(
                                        llm.stream_request(level, secret, txt)
                                    )
                            elif level == "preflight_prompt":
                                valid, output_raw = llm.run_judge(
                                    level, {"user_input": txt}, expected_output="dog"
                                )
                                st.session_state[
                                    f"intermediate_output_holder_{level}"
                                ] = (valid, output_raw)

                                if valid:
                                    st.write_stream(
                                        llm.stream_request(level, secret, txt)
                                    )
                                else:
                                    st.error(
                                        "Malicious user input detected. Try again."
                                    )
                            else:
                                st.write_stream(llm.stream_request(level, secret, txt))

                with st.container(border=True):
                    secret_guess = st.text_input(
                        "What is the secret?",
                        key=f"guess_{level}",
                        placeholder="Your guess",
                    )
                    btn_submit_guess = st.button(
                        "Submit guess", key=f"submit_guess_{level}"
                    )

                    if btn_submit_guess:
                        st.session_state[f"secret_guess_count_{level}"] += 1
                        if secret_guess.lower() == secret.lower():
                            st.success("You found the secret!")
                            st.session_state[f"solved_{level}"] = True
                        else:
                            st.error("Wrong guess. Try again.")

        with col2:
            with st.container(border=True, height=600):
                st.info(
                    "There are three levels of hints and a full explanation available to you. But be careful, if you open them before solving the secret, it will show up in your record.",
                    icon="ℹ️",
                )

                hint_1_cont = card(color=hint_color)
                hint1 = hint_1_cont.toggle(
                    "Show hint 1 - **Basic description of security strategy**",
                    key=f"hint1_checkbox_{level}",
                )
                if hint1:
                    # if hint gets revealed, it is marked as opened. Unless the secret was already found
                    st.session_state[f"opened_hint_{level}_0"] = (
                        True
                        if st.session_state[f"opened_hint_{level}_0"]
                        else not st.session_state[f"solved_{level}"]
                    )

                    hint_1_cont.write(config.LEVEL_DESCRIPTIONS[level]["hint1"])

                hint_2_cont = card(color=hint_color)
                hint2 = hint_2_cont.toggle(
                    "Show hint 2 - **Backend code execution**",
                    key=f"hint2_checkbox_{level}",
                )
                if hint2:
                    st.session_state[f"opened_hint_{level}_1"] = (
                        True
                        if st.session_state[f"opened_hint_{level}_1"]
                        else not st.session_state[f"solved_{level}"]
                    )

                    user_input_holder = txt if len(txt) > 0 else None

                    prompts = llm.get_full_prompt(
                        level, {"user_input": user_input_holder}
                    )

                    def show_base_prompt():
                        # show prompt
                        for key, val in prompts.items():
                            desc = key.replace("_", " ").capitalize()
                            hint_2_cont.write(f"*{desc}:*")
                            hint_2_cont.code(val, language=None)

                    if level == "llm_judge_input":
                        special_prompt = llm.get_full_prompt(
                            llm.secondary_llm_call[level],
                            {"user_input": user_input_holder},
                        )

                        hint_2_cont.write(
                            "*Step 1:* A **LLM judge** reviews the user input and determines if it is malicious or not."
                        )
                        hint_2_cont.write("**LLM judge prompt:**")
                        for key, val in special_prompt.items():
                            hint_2_cont.code(val, language=None)
                        hint_2_cont.write("The response of the LLM judge:")
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is None:
                            hint_2_cont.warning("Please submit a prompt first.")

                        else:
                            invalid, output_raw = intermediate_output
                            hint_2_cont.code(output_raw, language=None)
                            hint_2_cont.write(
                                f"The prompt was determined as **{'malicious' if invalid else 'not malicious'}** and therefor step 2 is executed."
                            )

                        hint_2_cont.write(
                            "*Step 2:* If the user input is not classified as malicious, the prompt containing the actual secret is executed and the response is shown."
                        )
                        hint_2_cont.write("**Actual prompt:**")
                        show_base_prompt()
                    elif level == "basic_check_secret_in_output":
                        hint_2_cont.write("*Step 1:* The following prompt is executed:")
                        show_base_prompt()
                        hint_2_cont.write(
                            "*Step 2:* In the response text of the LLM call, the secret is searched for with a simple python expression . If it contains the secret, the output will not be shown."
                        )
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        hint_2_cont.write("The code execution looks like this:")
                        if intermediate_output is not None:
                            hint_2_cont.code(
                                f"secret.lower() in output.lower() = {intermediate_output}"
                            )
                            hint_2_cont.write(
                                f"And the output **{'was not' if intermediate_output else 'was'}** shown to the user."
                            )
                        else:
                            hint_2_cont.warning("Please submit a prompt first.")
                    elif level == "advanced_check_secret_in_output":
                        hint_2_cont.write("*Step 1:* The following prompt is executed:")
                        show_base_prompt()
                        hint_2_cont.write(
                            "*Step 2:* In the response text of the LLM call, the secret is searched for with a python function `is_subsequence` which looks for substrings. If it contains the secret, the output will not be shown."
                        )
                        with hint_2_cont:
                            utils.is_subsequence
                        hint_2_cont.write("The code execution looks like this:")
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is not None:
                            hint_2_cont.code(
                                f"utils.is_subsequence(output, secret) = {intermediate_output}"
                            )
                            hint_2_cont.write(
                                f"And the output **{'was not' if intermediate_output else 'was'}** shown to the user."
                            )
                        else:
                            hint_2_cont.warning("Please submit a prompt first.")
                    elif level == "llm_judge_output":
                        hint_2_cont.write("*Step 1:* The following prompt is executed:")
                        show_base_prompt()
                        hint_2_cont.write(
                            "*Step 2:* The response of the LLM call is checked by a **LLM judge**. The judge checks if the secret is hidden in the response."
                        )
                        special_prompt = llm.get_full_prompt(
                            llm.secondary_llm_call[level],
                            {"message": output},
                        )
                        for key, val in special_prompt.items():
                            hint_2_cont.code(val, language=None)
                        hint_2_cont.write("The response of the LLM judge:")
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is None:
                            hint_2_cont.warning("Please submit a prompt first.")
                        else:
                            invalid, output_raw = intermediate_output
                            hint_2_cont.code(output_raw, language=None)
                            hint_2_cont.write(
                                f"The LLM-judge **{'did' if invalid else 'did not'}** find the secret in the answer."
                            )
                    elif level == "chain_of_thought":
                        hint_2_cont.write(
                            "*Step 1:* The following prompt with Chain-of-thought reasoning is executed. But only the finale answer is displayed to the user:"
                        )
                        show_base_prompt()
                        hint_2_cont.write(
                            "The full model output, including the reasoning:"
                        )
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is None:
                            hint_2_cont.warning("Please submit a prompt first.")
                        else:
                            hint_2_cont.code(intermediate_output, language=None)
                    elif level == "guard_framework":
                        hint_2_cont.write(
                            "*Step 1:* The user input is reviewed with the pre-build framework `LLM Guard` to check for prompt injections. It uses a [Huggingface model](https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2) specialized in detecting prompt injections."
                        )
                        with hint_2_cont:
                            PromptInjection
                        hint_2_cont.write("The output of the guard looks like this:")
                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is None:
                            hint_2_cont.warning("Please submit a prompt first.")
                        else:
                            is_valid, risk_score = intermediate_output
                            hint_2_cont.code(
                                f"""
                                prompt is valid: {is_valid}
                                Prompt has a risk score of: {risk_score}""",
                                language=None,
                            )
                            hint_2_cont.write(
                                f"The Huggingface model **{'did not' if is_valid else 'did'}** predict a prompt injection."
                            )

                        hint_2_cont.write(
                            "*Step 2:* If the user input is valid, the following prompt is executed and the response is shown to the user:"
                        )
                        show_base_prompt()
                    elif level == "preflight_prompt":
                        hint_2_cont.write(
                            "*Step 1:* The following pre-flight prompt is executed to see if the user input changes the expected output:"
                        )
                        special_prompt = llm.get_full_prompt(
                            llm.secondary_llm_call[level],
                            {"user_input": user_input_holder},
                        )

                        hint_2_cont.code(special_prompt["user_prompt"], language=None)
                        hint_2_cont.write("The output of the pre-flight prompt is:")

                        intermediate_output = st.session_state[
                            f"intermediate_output_holder_{level}"
                        ]
                        if intermediate_output is None:
                            hint_2_cont.warning("Please submit a prompt first.")
                        else:
                            is_valid, output_raw = intermediate_output
                            hint_2_cont.code(output_raw, language=None)
                            hint_2_cont.write(
                                f"The output of the pre-flight prompt **{'was' if is_valid else 'was not'}** as expected."
                            )
                        hint_2_cont.write(
                            "*Step 2:* If the output of the pre-flight prompt is as expected, the following prompt is executed and the response is shown to the user:"
                        )
                        show_base_prompt()
                    else:
                        hint_2_cont.write(
                            "*Step 1:* The following prompt is executed and the full response is shown to the user:"
                        )
                        show_base_prompt()

                hint_3_cont = card(color=hint_color)

                hint3 = hint_3_cont.toggle(
                    "Show hint 3 - **Prompt solution example**",
                    key=f"hint3_checkbox_{level}",
                )
                if hint3:
                    st.session_state[f"opened_hint_{level}_2"] = (
                        True
                        if st.session_state[f"opened_hint_{level}_2"]
                        else not st.session_state[f"solved_{level}"]
                    )

                    hint_3_cont.code(
                        config.LEVEL_DESCRIPTIONS[level]["hint3"],
                        language=None,
                    )
                    hint_3_cont.info("*May not always work")

                info_cont = card(color=info_color)

                info_toggle = info_cont.toggle(
                    "Show info - **Explanation and real-life usage**",
                    key=f"info_checkbox_{level}",
                )
                if info_toggle:
                    st.session_state[f"opened_hint_{level}_3"] = (
                        True
                        if st.session_state[f"opened_hint_{level}_3"]
                        else not st.session_state[f"solved_{level}"]
                    )

                    info_cont.write("### " + config.LEVEL_DESCRIPTIONS[level]["name"])
                    info_cont.write("##### Explanation")
                    info_cont.write(config.LEVEL_DESCRIPTIONS[level]["explanation"])
                    info_cont.write("##### Real-life usage")
                    info_cont.write(config.LEVEL_DESCRIPTIONS[level]["real_life"])
                    df = pd.DataFrame(
                        {
                            "Benefits": [config.LEVEL_DESCRIPTIONS[level]["benefits"]],
                            "Drawbacks": [
                                config.LEVEL_DESCRIPTIONS[level]["drawbacks"]
                            ],
                        },
                    )
                    info_cont.markdown(
                        df.style.hide(axis="index").to_html(), unsafe_allow_html=True
                    )


def build_hint_status(level: str):
    hint_status = ""
    for i in range(4):
        if st.session_state[f"opened_hint_{level}_{i}"]:
            hint_status += f"❌ {i+1}<br>"
    return hint_status


with st.expander("🏆 Record", expanded=True):
    show_mitigation_toggle = st.toggle(
        "[SPOILER] Show all mitigation techniques with their benefits and drawbacks",
        key=f"show_mitigation",
    )
    if show_mitigation_toggle:
        st.warning("All mitigation techniques are shown.", icon="🚨")

    # build table
    table_data = []
    for idx, level in enumerate(config.LEVELS):
        if show_mitigation_toggle:

            st.session_state[f"opened_hint_{level}_3"] = (
                True
                if st.session_state[f"opened_hint_{level}_3"]
                else not st.session_state[f"solved_{level}"]
            )

        table_data.append(
            [
                idx,
                config.LEVEL_EMOJIS[idx],
                st.session_state[f"prompt_try_count_{level}"],
                st.session_state[f"secret_guess_count_{level}"],
                build_hint_status(level),
                "✅" if st.session_state[f"solved_{level}"] else "❌",
                config.SECRETS[idx] if st.session_state[f"solved_{level}"] else "...",
                (
                    "<b>" + config.LEVEL_DESCRIPTIONS[level]["name"] + "</b>"
                    if st.session_state[f"opened_hint_{level}_0"]
                    or st.session_state[f"opened_hint_{level}_1"]
                    or st.session_state[f"opened_hint_{level}_2"]
                    or st.session_state[f"opened_hint_{level}_3"]
                    or show_mitigation_toggle
                    else "..."
                ),
                (
                    config.LEVEL_DESCRIPTIONS[level]["benefits"]
                    if st.session_state[f"opened_hint_{level}_3"]
                    or show_mitigation_toggle
                    else "..."
                ),
                (
                    config.LEVEL_DESCRIPTIONS[level]["drawbacks"]
                    if st.session_state[f"opened_hint_{level}_3"]
                    or show_mitigation_toggle
                    else "..."
                ),
            ]
        )

    # show as pandas dataframe
    st.markdown(
        pd.DataFrame(
            table_data,
            columns=[
                "lvl",
                "emoji",
                "Prompt tries",
                "Secret guesses",
                "Hint used",
                "Solved",
                "Secret",
                "Mitigation",
                "Benefits",
                "Drawbacks",
            ],
            # index=config.LEVEL_EMOJIS[: len(config.LEVELS)],
        )
        .style.hide(axis="index")
        .to_html(),
        unsafe_allow_html=True,
        # )
    )

# TODOS:
# - mark the user input with color in prompt
# TODO: https://docs.streamlit.io/develop/api-reference/caching-and-state/st.cache_resource