AutoMerger / app.py
mlabonne's picture
Update app.py
380a2f5 verified
import os
import re
import sys
import time
import random
import yaml
import subprocess
from io import StringIO
import runpod
import shutil
import requests
import gradio as gr
import pandas as pd
from jinja2 import Template
from huggingface_hub import ModelCard, ModelCardData, HfApi, repo_info
from huggingface_hub.utils import RepositoryNotFoundError
# Set environment variables
HF_TOKEN = os.environ.get("HF_TOKEN")
runpod.api_key = os.environ.get("RUNPOD_TOKEN")
# Parameters
USERNAME = 'automerger'
N_ROWS = 15
WAIT_TIME = 10800
# Logger from https://github.com/gradio-app/gradio/issues/2362
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
def create_dataset() -> bool:
"""
Use Scrape Open LLM Leaderboard to create a CSV dataset.
"""
command = ["python3", "scrape-open-llm-leaderboard/main.py", "-csv"]
try:
result = subprocess.run(command, check=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, text=True)
print(f"scrape-open-llm-leaderboard: {result.stdout}")
return True
except subprocess.CalledProcessError as e:
print(f"scrape-open-llm-leaderboard: {e.stderr}")
return False
def merge_models() -> None:
"""
Use mergekit to create a merge.
"""
command = ["mergekit-yaml", "config.yaml", "/data/merge", "--copy-tokenizer", "--transformers_cache", "/data"]
with open("output.log", "a") as log_file:
try:
result = subprocess.run(command, check=True, stdout=log_file,
stderr=log_file, text=True)
print(f"mergekit: {result.stdout}")
except subprocess.CalledProcessError as e:
print(f"Error: mergekit {command}: {e.stderr}")
def make_df(file_path: str, n_rows: int) -> pd.DataFrame:
"""
Create a filtered dataset from the Open LLM Leaderboard.
"""
columns = ["Available on the hub", "Model sha", "T", "Type", "Precision",
"Architecture", "Weight type", "Hub ❤️", "Flagged", "MoE"]
ds = pd.read_csv("open-llm-leaderboard.csv", encoding='utf-8')
df = (
ds[
(ds["#Params (B)"] == 8)
& (ds["Architecture"] == "LlamaForCausalLM")
& (ds["Available on the hub"] == True)
& (ds["Flagged"] == True)
& (~ds["Model"].str.lower().str.contains("yi"))
& (~ds["Model"].str.lower().str.contains("9b"))
& (~ds["Model"].str.lower().str.contains("8xqmff94/slm"))
& (ds["MoE"] == True)
& (ds["Weight type"] == "Original")
]
.drop(columns=columns)
.drop_duplicates(subset=["Model"])
.sort_values(by="MMLU", ascending=False)
.iloc[:n_rows]
)
return df
def repo_exists(repo_id: str) -> bool:
try:
repo_info(repo_id)
return True
except RepositoryNotFoundError:
return False
def get_name(models: list[pd.Series], username: str, version=0) -> str:
model_name = models[0]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ models[1]["Model"].split("/")[-1].split("-")[0].capitalize() \
+ "-8B"
if version > 0:
model_name = model_name.split("-")[0] + f"-v{version}-8B"
if repo_exists(f"{username}/{model_name}"):
get_name(models, username, version+1)
return model_name
def get_license(models: list[pd.Series]) -> str:
license1 = models[0]["Hub License"]
license2 = models[1]["Hub License"]
license = "cc-by-nc-4.0"
if license1 == "cc-by-nc-4.0" or license2 == "cc-by-nc-4.0":
license = "cc-by-nc-4.0"
elif license1 == "apache-2.0" or license2 == "apache-2.0":
license = "apache-2.0"
elif license1 == "MIT" and license2 == "MIT":
license = "MIT"
return license
def create_config(models: list[pd.Series]) -> str:
slerp_config = f"""
slices:
- sources:
- model: {models[0]["Model"]}
layer_range: [0, 32]
- model: {models[1]["Model"]}
layer_range: [0, 32]
merge_method: slerp
base_model: {models[0]["Model"]}
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
random_seed: 0
"""
dare_config = f"""
models:
- model: {models[0]["Model"]}
# No parameters necessary for base model
- model: {models[1]["Model"]}
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: {models[0]["Model"]}
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
"""
stock_config = f"""
models:
- model: meta-llama/Meta-Llama-3-8B
- model: {models[0]["Model"]}
- model: {models[1]["Model"]}
merge_method: model_stock
base_model: meta-llama/Meta-Llama-3-8B
dtype: bfloat16
"""
yaml_config = random.choices([slerp_config, dare_config, stock_config], weights=[0.3, 0.6, 0.1], k=1)[0]
with open('config.yaml', 'w', encoding="utf-8") as f:
f.write(yaml_config)
return yaml_config
def create_model_card(yaml_config: str, model_name: str, username: str, license: str) -> None:
template_text = """
---
license: {{ license }}
base_model:
{%- for model in models %}
- {{ model }}
{%- endfor %}
tags:
- merge
- mergekit
- lazymergekit
- automerger
---
# {{ model_name }}
{{ model_name }} is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration.
{%- for model in models %}
* [{{ model }}](https://huggingface.co/{{ model }})
{%- endfor %}
## 🧩 Configuration
```yaml
{{- yaml_config -}}
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "{{ username }}/{{ model_name }}"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
"""
# Create a Jinja template object
jinja_template = Template(template_text.strip())
# Get list of models from config
data = yaml.safe_load(yaml_config)
if "models" in data:
models = [data["models"][i]["model"] for i in range(len(data["models"])) if "parameters" in data["models"][i]]
elif "parameters" in data:
models = [data["slices"][0]["sources"][i]["model"] for i in range(len(data["slices"][0]["sources"]))]
elif "slices" in data:
models = [data["slices"][i]["sources"][0]["model"] for i in range(len(data["slices"]))]
else:
raise Exception("No models or slices found in yaml config")
# Fill the template
content = jinja_template.render(
model_name=model_name,
models=models,
yaml_config=yaml_config,
username=username,
license=license
)
# Save the model card
card = ModelCard(content)
card.save('/data/merge/README.md')
def upload_model(api: HfApi, username: str, model_name: str) -> None:
"""
Upload merged model to the Hugging Face Hub.
"""
api.create_repo(
repo_id=f"{username}/{model_name}",
repo_type="model",
exist_ok=True,
)
api.upload_folder(
repo_id=f"{username}/{model_name}",
folder_path="/data/merge",
)
def create_pod(model_name: str, username: str, n=10, wait_seconds=10):
"""
Create a RunPod instance to run the evaluation.
"""
for attempt in range(n):
try:
pod = runpod.create_pod(
name=f"Automerge {model_name} on Nous",
image_name="runpod/pytorch:2.0.1-py3.10-cuda11.8.0-devel-ubuntu22.04",
gpu_type_id="NVIDIA GeForce RTX 3090",
cloud_type="COMMUNITY",
gpu_count=1,
volume_in_gb=0,
container_disk_in_gb=50,
template_id="au6nz6emhk",
env={
"BENCHMARK": "nous",
"MODEL_ID": f"{username}/{model_name}",
"REPO": "https://github.com/mlabonne/llm-autoeval.git",
"TRUST_REMOTE_CODE": False,
"PRIVATE_GIST": False,
"YALL_GIST_ID": "56ebbd012d942a6b749db5243de5740f",
"DEBUG": False,
"GITHUB_API_TOKEN": os.environ["GITHUB_TOKEN"],
}
)
print("Evaluation started.")
return pod
except Exception as e:
print(f"Attempt {attempt + 1} failed with error: {e}")
if attempt < n - 1:
print(f"Waiting {wait_seconds} seconds before retrying...")
time.sleep(wait_seconds)
else:
print("All attempts failed. Giving up.")
raise
def download_leaderboard():
"""
Download the gist that contains the leaderboard.
"""
url = "https://gist.githubusercontent.com/automerger/56ebbd012d942a6b749db5243de5740f/raw"
file_path = "leaderboard.txt"
response = requests.get(url)
return response.content.decode('utf-8')
def convert_markdown_table_to_dataframe(md_content):
"""
Converts markdown table to Pandas DataFrame.
"""
# Remove leading and trailing | characters
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
# Create DataFrame from cleaned content
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
# Remove the first row after the header
df = df.drop(0, axis=0)
# Strip whitespace from column names
df.columns = df.columns.str.strip()
return df
def get_dataframe():
"""
Wrapper to update the Gradio dataframe.
"""
content = download_leaderboard()
df = convert_markdown_table_to_dataframe(content)
return df
def clear_data():
"""
Clear data so the Space doesn't crash...
"""
dir_path = "/data"
try:
with os.scandir(dir_path) as entries:
for entry in entries:
if entry.is_file():
os.unlink(entry.path)
print("All files deleted successfully.")
except OSError:
print("Error occurred while deleting files.")
def get_size(start_path):
total_size = 0
for dirpath, dirnames, filenames in os.walk(start_path):
for f in filenames:
fp = os.path.join(dirpath, f)
# skip if it is symbolic link
if not os.path.islink(fp):
total_size += os.path.getsize(fp)
return total_size
def human_readable_size(size, decimal_places=2):
for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']:
if size < 1024.0:
break
size /= 1024.0
return f"{size:.{decimal_places}f} {unit}"
def merge_loop():
"""
Main function that orchestrates the merge.
"""
# Start HF API
api = HfApi(token=HF_TOKEN)
# Create dataset (proceed only if successful)
if not create_dataset():
print("Failed to create dataset. Skipping merge loop.")
return
df = make_df("open-llm-leaderboard.csv", N_ROWS)
assert not df.empty, "DataFrame is empty. Cannot proceed with merge loop."
# Sample two models
dir_path = "/data"
sample = df.sample(n=2)
models = [sample.iloc[i] for i in range(2)]
# Get model name
model_name = get_name(models, USERNAME, version=0)
print("="*60)
print(f"Model name: {model_name}")
# Get model license
license = get_license(models)
print(f"License: {license}")
# Merge configs
yaml_config = create_config(models)
print(f"YAML config:{yaml_config}")
print(f"Data size: {human_readable_size(get_size(dir_path))}")
# Merge models
merge_models()
print("Model merged!")
# Create model card
print("Create model card")
create_model_card(yaml_config, model_name, USERNAME, license)
# Upload model
print("Upload model")
upload_model(api, USERNAME, model_name)
# Clear data
print("Clear data")
clear_data()
# Evaluate model on Runpod
print("Start evaluation")
create_pod(model_name, USERNAME)
print(f"Waiting for {WAIT_TIME/60} minutes...")
# Set the HF_DATASETS_CACHE environment variable
os.environ['HF_DATASETS_CACHE'] = "/data/hfcache/"
# Verify the environment variable is set
print(os.environ['HF_DATASETS_CACHE'])
# Install scrape-open-llm-leaderboard and mergekit
command = ["git", "clone", "-q", "https://github.com/Weyaxi/scrape-open-llm-leaderboard"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-r", "scrape-open-llm-leaderboard/requirements.txt"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["git", "clone", "https://github.com/arcee-ai/mergekit.git"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
command = ["pip", "install", "-e", "mergekit"]
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
sys.stdout = Logger("output.log")
# Gradio interface
title = """
<div align="center">
<p style="font-size: 44px;">♾️ AutoMerger</p>
<p style="font-size: 20px;">📃 <a href="https://huggingface.co/automerger">Merged models</a> • 🏆 <a href="https://huggingface.co/spaces/automerger/Yet_Another_LLM_Leaderboard">Leaderboard</a> • 📝 <a href="https://huggingface.co/blog/mlabonne/merge-models">Article</a> • 🐦 <a href="https://twitter.com/maximelabonne">Follow me on X</a></p>
<p><em>AutoMerger selects two Llama 3 8B models on top of the Open LLM Leaderboard, combine them with a merge technique, and evaluate the resulting model.</em></p>
</div>
"""
footer = '<div align="center"><p><em>Special thanks to <a href="https://huggingface.co/Weyaxi">Weyaxi</a> for the <a href="https://github.com/Weyaxi/scrape-open-llm-leaderboard">Open LLM Leaderboard Scraper</a>, <a href="https://github.com/cg123">Charles Goddard</a> for <a href="https://github.com/arcee-ai/mergekit">mergekit</a>, and <a href="https://huggingface.co/MaziyarPanahi">Maziyar Panahi</a> for making <a href="https://huggingface.co/collections/MaziyarPanahi/gguf-65afc99c3997c4b6d2d9e1d5">GGUF versions</a> of these automerges.</em></p></div>'
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
gr.Markdown(title)
logs = gr.Textbox(label="Logs")
demo.load(read_logs, None, logs, every=10)
leaderboard = gr.Dataframe(value=get_dataframe, datatype=["markdown", "number", "number", "number", "number", "number"], every=3600)
gr.Markdown(footer)
demo.queue(default_concurrency_limit=50).launch(server_name="0.0.0.0", show_error=True, prevent_thread_lock=True)
print("Start AutoMerger...")
# Main loop
while True:
merge_loop()
time.sleep(WAIT_TIME)