Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 16,571 Bytes
e5d94ce e9aa60b e5d94ce 8cf5324 e5d94ce 8cf5324 ca8f9e2 8cf5324 e5d94ce aafa82a e5d94ce 8cf5324 e5d94ce 8cf5324 e5d94ce f97f195 e5d94ce 8cf5324 e917f86 aafa82a e917f86 456d954 e917f86 8cf5324 e917f86 aafa82a e917f86 456d954 e917f86 8cf5324 e5d94ce 9afb478 e5d94ce ca8f9e2 e5d94ce 8cf5324 ca8f9e2 8cf5324 e5d94ce 3196bc9 f21083c 3196bc9 e5d94ce ca8f9e2 e5d94ce e917f86 e5d94ce 5091a94 e5d94ce 5091a94 e5d94ce 5091a94 e5d94ce f97f195 e5d94ce 59206e4 8cf5324 03e9a4f 59206e4 2b5e864 55b4e29 74435dd a5bd891 2b5e864 f21083c 472bef9 ca8f9e2 2b5e864 e5d94ce f21083c 2b5e864 e5d94ce 603cb8a 5091a94 603cb8a e5d94ce f21083c 8cf5324 f21083c e5d94ce 2fc92d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import io
import os
import re
import time
from collections import defaultdict
from datetime import datetime
import cairosvg
import chess
import chess.svg
import gistyc
import numpy as np
import outlines.models as models
from outlines import generate
import pandas as pd
import requests
from tqdm.auto import tqdm
from PIL import Image as PILImage
import gradio as gr
def generate_regex(board):
"""
Generate regular expression for legal moves.
Based on https://gist.github.com/903124/cfbefa24da95e2316e0d5e8ef8ed360d by @903124S.
"""
legal_moves = list(board.legal_moves)
move_strings = [board.san(move) for move in legal_moves]
move_strings = [re.sub(r"[+#]", "", move) for move in move_strings]
regex_pattern = "|".join(re.escape(move) for move in move_strings)
return regex_pattern
def write_pgn(
pgn_moves, model_id_white, model_id_black, result, time_budget, termination
):
# Get current UTC date and time
current_utc_datetime = datetime.utcnow()
utc_date = current_utc_datetime.strftime("%Y.%m.%d")
utc_time = current_utc_datetime.strftime("%H:%M:%S")
# Output the final PGN with CLKS and additional details
final_pgn = f"""[Event 'Chess LLM Arena']
[Site 'https://github.com/mlabonne/chessllm']
[Date '{utc_date}']
[White '{model_id_white}']
[Black '{model_id_black}']
[Result '{result}']
[Time '{utc_time}']
[TimeControl '{time_budget}+0']
[Termination '{termination}']
{pgn_moves}
"""
return final_pgn
def determine_termination(board, time_budget_white, time_budget_black):
if board.is_checkmate():
return "Checkmate"
elif board.is_stalemate():
return "Stalemate"
elif board.is_insufficient_material():
return "Draw due to insufficient material"
elif board.can_claim_threefold_repetition():
return "Draw by threefold repetition"
elif board.can_claim_fifty_moves():
return "Draw by fifty-move rule"
elif time_budget_white <= 0 or time_budget_black <= 0:
return "Timeout"
else:
return "Unknown"
def format_elapsed(seconds):
"""Formats elapsed time dynamically to hh:mm:ss, mm:ss, or ss format."""
hours, remainder = divmod(int(seconds), 3600)
minutes, seconds = divmod(remainder, 60)
if hours:
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
elif minutes:
return f"{minutes:02d}:{seconds:02d}"
else:
return f"{seconds:02d}"
def create_gif(image_list, gif_path, duration):
# Convert numpy arrays back to PIL images
pil_images = [PILImage.fromarray(image) for image in image_list]
# Save the images as a GIF
pil_images[0].save(
gif_path, save_all=True, append_images=pil_images[1:], duration=duration, loop=0
)
def render_init(board):
svg = chess.svg.board(board=board).encode("utf-8")
png = cairosvg.svg2png(bytestring=svg)
image = PILImage.open(io.BytesIO(png))
# Calculate the size of the new image
width, height = image.size
new_width = 3 * width
# Create a new blank image with the desired dimensions
new_image = PILImage.new('RGB', (width, height), 'white')
# Calculate the position to paste the chess board image
left = 0 # One third of the width
upper = 0
# Paste the chess board image into the new image
new_image.paste(image, (left, upper))
return new_image
def render_new(board):
last_move = board.peek()
svg = chess.svg.board(board=board, arrows=[(last_move.from_square, last_move.to_square)]).encode("utf-8")
png = cairosvg.svg2png(bytestring=svg)
image = PILImage.open(io.BytesIO(png))
# Calculate the size of the new image
width, height = image.size
new_width = 3 * width
# Create a new blank image with the desired dimensions
new_image = PILImage.new('RGB', (width, height), 'white')
# Calculate the position to paste the chess board image
left = 0 # One third of the width
upper = 0
# Paste the chess board image into the new image
new_image.paste(image, (left, upper))
return new_image
def save_result_file(
pgn_id, model_id_white, model_id_black, termination, result, auth_token, gist_id
):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Data to be written to the file
data_str = f"{pgn_id},{timestamp},{model_id_white},{model_id_black},{termination},{result}\n"
# Append data to a text file
with open("chessllm_results.csv", "a") as file:
file.write(data_str)
# Update the Gist
gist_api = gistyc.GISTyc(auth_token=GITHUB_TOKEN)
response_update_data = gist_api.update_gist(
file_name="chessllm_results.csv", gist_id=gist_id
)
def save_pgn(final_pgn, file_name, auth_token):
# Write final PGN to a file
with open(file_name + ".pgn", "w") as file:
file.write(final_pgn)
gist_api = gistyc.GISTyc(auth_token=GITHUB_TOKEN)
response_data = gist_api.create_gist(file_name=file_name + ".pgn")
print(response_data)
return response_data["id"]
def download_file(base_url, file_name):
"""
Helper function to download a file.
"""
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
url = f"{base_url}?ts={timestamp}"
headers = {
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",
"Expires": "0",
}
response = requests.get(url, headers=headers)
if response.status_code == 200:
with open(file_name, "wb") as file:
file.write(response.content)
else:
print(f"Failed to download file. HTTP status code: {response.status_code}")
def get_leaderboard():
"""
Wrapper to download the leaderboard and update the Gradio Dataframe.
"""
url = f"https://gist.githubusercontent.com/chessllm/{LEAD_GIST_ID}/raw"
download_file(url, "chessllm_leaderboard.csv")
return pd.read_csv("chessllm_leaderboard.csv")
def calculate_elo(rank1, rank2, result):
"""
Calculate the new ELO rating for a player.
:param rank1: The current ELO rating of player 1
:param rank2: The current ELO rating of player 2
:param result: 1 if player 1 wins, 0 if player 2 wins, 0.5 for a draw
:return: The updated ELO rating of player 1
"""
K = 32
expected_score1 = 1 / (1 + 10 ** ((rank2 - rank1) / 400))
new_rank1 = rank1 + K * (result - expected_score1)
return round(new_rank1)
def update_elo_ratings(chess_data):
"""
Update ELO ratings for each player based on the match results in the dataset.
:param chess_data: DataFrame with chess match results
:return: A dictionary with updated ELO ratings for each player
"""
elo_ratings = defaultdict(lambda: 1000) # Default ELO rating is 1000
for index, row in chess_data.iterrows():
if row["Result"] == "*":
continue # Skip ongoing games
model1 = row["Model1"]
model2 = row["Model2"]
result = row["Result"]
model1_elo = elo_ratings[model1]
model2_elo = elo_ratings[model2]
# Update ELO based on the result
if result == "1-0": # Model1 wins
elo_ratings[model1] = calculate_elo(model1_elo, model2_elo, 1)
elo_ratings[model2] = calculate_elo(model2_elo, model1_elo, 0)
elif result == "0-1": # Model2 wins
elo_ratings[model1] = calculate_elo(model1_elo, model2_elo, 0)
elo_ratings[model2] = calculate_elo(model2_elo, model1_elo, 1)
elif result == "1/2-1/2": # Draw
elo_ratings[model1] = calculate_elo(model1_elo, model2_elo, 0.5)
elo_ratings[model2] = calculate_elo(model2_elo, model1_elo, 0.5)
return elo_ratings
def update(model_id_white, model_id_black):
model_white = models.transformers(model_id_white)
model_black = models.transformers(model_id_black)
TIME_BUDGET = 180
prompt = '1.'
# Initialize the chess board
board = chess.Board()
board_images = []
pgn_moves = ""
move_number = 1
result = None
# Render first image
image = render_init(board)
yield image
# Time budget
time_budget_white = TIME_BUDGET
time_budget_black = TIME_BUDGET
white_bar_format = "{desc} {n:.0f} seconds left | Elapsed: {elapsed}"
black_bar_format = "{desc} {n:.0f} seconds left | Elapsed: {elapsed}"
white_bar = tqdm(total=time_budget_white, desc=f"{model_id_white.split('/')[-1]}:", bar_format=white_bar_format, colour='white')
black_bar = tqdm(total=time_budget_black, desc=f"{model_id_black.split('/')[-1]}:", bar_format=black_bar_format, colour='black')
elo_ratings_df = pd.read_csv("chessllm_leaderboard.csv")
# Game loop
while not board.is_game_over():
# Select model
current_model = model_white if board.turn == chess.WHITE else model_black
# Generate regex pattern
regex_pattern = generate_regex(board)
# Generate move
start_time = time.time()
guided = generate.regex(current_model, regex_pattern)(prompt)
end_time = time.time()
move_duration = end_time - start_time
try:
# Parse move
move_san = guided.strip()
move = board.parse_san(move_san)
if move not in board.legal_moves:
print(f"Illegal move: {move_san}")
break
board.push(move)
# Write move
if board.turn == chess.BLACK:
move_str = f"{move_number}. {move_san} "
move_number += 1
else:
move_str = f"{move_san} "
pgn_moves += move_str
# Render the board to an image
image = render_new(board)
board_images.append(np.array(image))
# Deduct the time taken for the move from the model's time budget
if board.turn == chess.WHITE:
time_budget_black -= move_duration
black_bar.n = time_budget_black
black_bar.set_postfix_str(f"{format_elapsed(black_bar.format_dict['elapsed'])} elapsed")
black_bar.refresh()
if time_budget_black <= 0:
result = "1-0"
break
else:
time_budget_white -= move_duration
white_bar.n = time_budget_white
white_bar.set_postfix_str(f"{format_elapsed(white_bar.format_dict['elapsed'])} elapsed")
white_bar.refresh()
if time_budget_white <= 0:
result = "0-1"
break
# Display board
yield image
except ValueError:
print(f"Invalid move: {guided}")
break
white_bar.close()
black_bar.close()
# Get result
if result is None:
result = board.result()
# Create PGN
termination = determine_termination(board, time_budget_white, time_budget_black)
final_pgn = write_pgn(
pgn_moves, model_id_white, model_id_black, result, TIME_BUDGET, termination
)
file_name = f"{model_id_white.split('/')[-1]}_vs_{model_id_black.split('/')[-1]}"
pgn_id = save_pgn(final_pgn, file_name, GITHUB_TOKEN)
# Save results
save_result_file(
pgn_id, model_id_white, model_id_black, termination, result, GITHUB_TOKEN, RESULT_GIST_ID
)
# Create and display the GIF
create_gif(board_images, file_name + ".gif", duration=400)
# Print ELO ratings
current_elo_white = elo_ratings_df.loc[
elo_ratings_df["Model"] == model_id_white, "ELO Rating"
].get(0, 1000)
current_elo_black = elo_ratings_df.loc[
elo_ratings_df["Model"] == model_id_black, "ELO Rating"
].get(0, 1000)
if result == "1-0":
new_elo_white = calculate_elo(current_elo_white, current_elo_black, 1)
new_elo_black = calculate_elo(current_elo_black, current_elo_white, 0)
update_str = f"""{model_id_white} wins! ({termination})
ELO change:
* {model_id_white}: {current_elo_white} -> {new_elo_white} ({new_elo_white - current_elo_white:+})
* {model_id_black}: {current_elo_black} -> {new_elo_black} ({new_elo_black - current_elo_black:+})
"""
gr.Info(update_str)
print(update_str)
elif result == "0-1":
new_elo_white = calculate_elo(current_elo_white, current_elo_black, 0)
new_elo_black = calculate_elo(current_elo_black, current_elo_white, 1)
update_str = f"""{model_id_black} wins! ({termination})
ELO change:
* {model_id_white}: {current_elo_white} -> {new_elo_white} ({new_elo_white - current_elo_white:+})
* {model_id_black}: {current_elo_black} -> {new_elo_black} ({new_elo_black - current_elo_black:+})
"""
gr.Info(update_str)
print(update_str)
elif result == "1/2-1/2":
new_elo_white = calculate_elo(current_elo_white, current_elo_black, 0.5)
new_elo_black = calculate_elo(current_elo_black, current_elo_white, 0.5)
update_str = f"""Draw! ({termination})
ELO change:
* {model_id_white}: {current_elo_white} -> {new_elo_white} ({new_elo_white - current_elo_white:+})
* {model_id_black}: {current_elo_black} -> {new_elo_black} ({new_elo_black - current_elo_black:+})
"""
gr.Info(update_str)
print(update_str)
elif result == "*":
print(f"Ongoing game! ({termination})")
# Update ELO ratings for each model
chess_data = pd.read_csv('chessllm_results.csv')
elo_ratings = update_elo_ratings(chess_data)
# Convert the dictionary to a DataFrame for better display
elo_ratings_df = pd.DataFrame(elo_ratings.items(), columns=['Model', 'ELO Rating'])
# Round the ELO ratings to the nearest integer
elo_ratings_df['ELO Rating'] = elo_ratings_df['ELO Rating'].round().astype(int)
elo_ratings_df.sort_values(by='ELO Rating', ascending=False, inplace=True)
elo_ratings_df.reset_index(drop=True, inplace=True)
elo_ratings_df.to_csv('chessllm_leaderboard.csv', index=False)
# Upload chessllm_leaderboard.csv to GIST
gist_api = gistyc.GISTyc(auth_token=GITHUB_TOKEN)
response_update_data = gist_api.update_gist(file_name='chessllm_leaderboard.csv', gist_id={LEAD_GIST_ID})
yield file_name + ".gif"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
GITHUB_TOKEN = os.environ["GITHUB_TOKEN"]
RESULT_GIST_ID = "c491299e7b8a45a61ce5403a70cf8656"
LEAD_GIST_ID = "696115fe2df47fb2350fcff2663678c9"
# Download results and leaderboard
url1 = (f"https://gist.githubusercontent.com/chessllm/{RESULT_GIST_ID}/raw")
download_file(url1, "chessllm_results.csv")
elo_ratings_df = get_leaderboard()
# Render chessboard
board = chess.Board()
image = render_init(board)
title = """
<div align="center">
<p style="font-size: 36px;">⚔️ Chess LLM Arena (preview)</p>
<p style="font-size: 20px;">💻 <a href="https://github.com/mlabonne/chessllm">GitHub</a> • 💾 <a href="https://gist.github.com/chessllm/696115fe2df47fb2350fcff2663678c9">Gist Database</a> • 🤖 <a href="https://colab.research.google.com/drive/1e2PszrvaY4Lv5SiRXuBGb5R4GdZsm-H3">Trainer</a> • 📁 <a href="https://colab.research.google.com/drive/11UjbfajCzphe707_V7PD-2e5WIzyintf">Dataset</a></p>
<p><em>Pick two chess LLMs and make them compete in a chess match. When the game is over, it will automatically update the crowd-sourced leaderboard. Build a dataset and train your own small language model to compete in the arena.</em></p>
</div>
"""
footer = """
<p><em>Made by Maxime Labonne, Kostis Gourgoulias, and Ruchi Bahl.</em></p>
"""
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown(title)
with gr.Row():
model_id_white = gr.Textbox(label="♘ White Model ID", value="mlabonne/chesspythia-70m")
model_id_black = gr.Textbox(label="♞ Black Model ID", value="EleutherAI/pythia-70m-deduped")
btn = gr.Button("Fight!")
with gr.Row():
gr.HTML("""<div id='chessboard' style='width: 50%; display: block;'></div>""")
out = gr.Image(value=image, show_label=False, show_share_button=False, elem_id="chessboard")
gr.HTML("""<div id='rightblock' style='width: 50%; display: block;'></div>""")
btn.click(fn=update, inputs=[model_id_white, model_id_black], outputs=out)
gr.Markdown('<div align="center"><p style="font-size: 30px;">🏆 Leaderboard</p></div>')
leaderboard = gr.Dataframe(value=get_leaderboard, every=60)
gr.Markdown(footer)
demo.queue(api_open=False).launch(show_api=False) |