Spaces:
Running
Running
import chainlit as cl | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
from langchain.chat_models import ChatOpenAI | |
from langchain.storage import LocalFileStore | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
async def roaringkiity_chain(prompt: str): | |
# build FAISS index from csv | |
loader = CSVLoader(file_path="./data/roaringkitty.csv", source_column="Link") | |
data = loader.load() | |
documents = text_splitter.transform_documents(data) | |
store = LocalFileStore("./cache/") | |
core_embeddings_model = OpenAIEmbeddings() | |
embedder = CacheBackedEmbeddings.from_bytes_store( | |
core_embeddings_model, store, namespace=core_embeddings_model.model | |
) | |
# make async docsearch | |
docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder) | |
chain = RetrievalQA.from_chain_type( | |
ChatOpenAI(model="gpt-4", temperature=0, streaming=True), | |
chain_type="stuff", | |
return_source_documents=True, | |
retriever=docsearch.as_retriever(), | |
chain_type_kwargs = {"prompt": prompt} | |
) | |
return chain | |